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Wetting and drying at a curved substrate: Long-ranged forces
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We examine the interfacial properties of a hard spherical cavity, réjitmmersed in a solvent in which the
fluid-fluid interaction potential contains both a hard-sphere repulsive part and an attractiveomponent.
Near to liquid-gas coexistence where the chemical potential devidfiea - u(T) — 0 complete wetting
by the gas(drying) occurs and a coarse-grained effective Hamiltonian approach shows that the wall/liquid
surface tension has a termfi?/3, i.e., a leading-order power-law nonanalyticity in the curvati®e) in the
large cavity limit. For states sufficiently well removed from coexistence the surface tension can be expanded in
integer powers of the curvatuf@®, providedR>R, with the length scale given bR.=27y4(%)/ (ApSu),
whereyg () is the planar liquid/gas surface tension axglis the difference between the coexisting densities.
However, even in these circumstances there are addit®iah R contributions to the surface tension arising
from the dispersion forces. An exact statistical mechanical sum rule is used to relate the density of the fluid at
the point of contact with the cavity(R*, u), to the pressure of the reservoir and the surface tension. This
predicts thaip(R*, u) acquires a term ilR™>3 in the regimeR< R,. Numerical results obtained by applying
classical density functional theory to this model confirm all the predictions from the coarse-grained approach
for both the surface tension and the contact density. We argue that our results for leading-order nonanalytic
contributions are exact, i.e., they should remain valid in the presence of interface fluctuations, and we discuss
briefly the repercussions for solvation phenomena and for other wetting situations.
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[. INTRODUCTION ture that thermodynamic quantities such as the Gibbs adsorp-
) ) tion and the surface excess free energy, as well as the fluid
Although the phenomenology of adsorption of simple flu-gensity in contact with the hard wall, can be expanded in
ids at planar substrates is, arguably, well understood, fopteger powers of the curvatuR™. If the solvent exhibits
curved substrates our understanding is relatively poorly degas_liquid phase separation the situation becomes more com-
veloped. Much pioneering work on the relevant thermody-pjex and for largeR and thermodynamic states sufficiently
namics was carried out by Gibpg] and summaries of exact cjose to bulk coexistence, drying at the hard-wallliquid in-
statistical mechanical results can be found in reviews byeface leads to a regime where the surface thermodynamic
Henderson[2,3]. Understanding the role of curvature has g antities and the fluid contact density do not exhibit a
taken on some new impetus because of recent advances J3\ver-series expansion R, rather recent studies predict
microfabrication techniques; these can be used to create geggiking nonanalytic behavior with terms depending omRIn
metrical or chemical structures, with various shapes anglg 9 However, these studies relate to a specific class of
length scales, on solid substrates. How fluids behave in conpggel where the fluid-fluid interaction potential is short
tact with such surfaces is important in microfluidics and iSranged. This class includes potentials of finite support such
relevant for certain chemical and biological applications. Inyg the truncated Lennard-Jones poteraal used in simula-
order to exploit fully the potential uses of structured SUb'tions) and the square-well model, but also includes exponen-
strates it is necessary to have a detailed understanding ofia1y decaying potentials. Since in real fluids dispersion
fluid's adsorption behavior and, in particular, its wetting forces are always present, it is important to enquire how
properties(4]. Here we address a very basic question: HoWyegits found for the class of short-ranged models are modi-
does the nature of adsorption change when a substrate thatiig py the presence of long-ranggzbwer-law interparticle
planar_ acquires a nonzero curvature? We consider a par_tic'bbtentials. It is well known from the phenomenology of
larly simple geometry, namely, that where the substrate is gomplete wetting at planar substrafé8,11 that incorporat-
hard spherical wal(or cavity) of radiusR immersed in the jng power-law forces leads to a very different type of
fluid (solveny. Several recent studi¢S] have focused on the gnanalyticity in surface thermodynamic functions. For ex-
case where the solvent is the hard-sphere fluid so there is Ngnpje i the complete wetting regime the Gibbs adsorption
fluid-fluid phase separation and thus no complications Ober unit area diverges as —iu for short-ranged forces but
wetting or drying at the hard-wall-fluid interface. In these 55 5,-1/3 for dispersion forces in three dimensions, in the
circumstances there are compelling arguments based on Syt where the chemical potential deviation from bulk coex-
rules[6,7] and good numerical evidence from density func_iStenCG&,uE,LL—,uco(T) vanishes.
tional theory(DFT) calculations[5,8] to support the conjec-  1hg gpecific model fluid we consider here has a pair po-

tential consisting of a hard core of diameteplus an attrac-
tive tail, taken to be the attractive part of the full Lennard-
*Electronic address: Maria.Thomas@bristol.ac.uk Jones 12-6 potential—see E@1) below. In the limit of a
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planar substratdR=~, such a fluid exhibits complete drying lations, comparing with the predictions from the mesoscopic
at the hard wall for all temperaturd@sfor which there is bulk  treatment of Sec. Il. We find that all these predictions are
gas-liquid coexistence, i.e., a film of gas intrudes betweemorne out by the numerical results for both regimes, i.e., for
the reservoir of the bulk ||qU|d and the wall whose equ|l|b' R>RC and R< RC! Conﬁrming the Va||d|ty of the coarse-

rium thickness diverges, i.elgq~ ou e asou—0" forall  grained effective Hamiltonian approach. Section V considers
T<T,, the critical temperature. For a finite but large radiusihe adsorption of the model fluihside the hard spherical

F‘;ﬁ:’ we st_||I|I expl)_ec_t to f'ndr‘?‘ thick drying f'lmh but nrc:wlllts_ cavity, i.e., the situation of negative curvature, where capil-
thickness will be limited by the curvature so that in the limit lary evaporation is relevant. We conclude in Sec. VI with a

o e : )
fél“‘_o qutLertr;]alnsttflnltt(_a. Inﬂthéa ﬂpr%sentt ca}{_sel gf dISF.’er‘e"ondiscussion of our results and their possible significance for
orces, wi € attractive Tiuld-Tuid potential decaying as ;o jnterfacial phenomena. The Appendix describes the

-6 H 1/3 —Nt :
-r=°, we find thatl,,~R"", for 6u=07, in agreement with . . ) X .
earlier results based on an effective interfacial HamiltonianSharp'kmk calculation of the surface tension for fluid-fluid

approach{12—14. By contrast, the corresponding result for and wall-fluid interfaces and of the binding potential that
short-ranged forces has, ~In’R [6,9,15. Unlike previous enters the effective interfacial Hamiltonian used in Sec. II.
q 1 .

studies of wetting on spheres and cylindgt&8-17, where The sharp—k_ink.treatment predicts that for _both quid—.quid
the main purpose was to investigate how nonzero curvaturgnd .wall-flwd mterfgces the surface tension contains a
limits the equilibrium film thickness and modifies any wet- leading-order correction to the planar result which is propor-
ting transitions that might occur at the planar substrate, wéional toR™?In R when dispersion forces are presgt@,2q.
focus on the repercussions curvature has for the surface tehe existence of this contribution was confirmed in our DFT
sion, i.e., the surface excess grand potential per unit area éflculations for a hard-walgasinterface where there are no
the substrate, and on the behavior of the fluid density profil€omplications of drying. Note, however, that within DFT the
near the substrate. We find, in keeping with R6f, thatitis  leading-order correction i©(R™Y). For the hard-wallkquid
important to identify two separate regimes of interfacial be-interface drying leads to stronge® %3, leading-order cor-
havior. ForR> R, the surface tension and the density profilerections to the surface tension.
at the wall can be expanded in integer powerRdfwhereas Although our calculations pertain directly to the situation
for R<R these quantities acquire nonanalytic contributions,of complete drying at a hard spherical wall, it should be
for example, the surface tension has a leading-oRiéf  recognized6,9] that our results concerning nonanalytic fea-
correction to the planar value. The length scdR  tures in surface thermodynamic functions and crossover from
=2vy4(%)/ Sulp—pg), Where yg () is the planar gas-liquid analytic to nonanalytic behavior are equally relevant to sev-
surface tension andp,—p,) is the difference in coexisting eral other(less esotericphysical problems. These include
densities, is the same as that which determines capillary cowetting films of liquid adsorbed from the gas close to satu-
densation between two planar wetting walls or capillaryration on the surfaces of curved substrates, (@pavetting of
evaporation between two planar hard walls]. spherical colloidal particles immersed in a phase separating
Our paper is arranged as follows. In Sec. Il we describegbinary) solvent. If the colloid preferentially adsorbs one
an effective interfacial Hamiltonian approach, based on &omponent of the mixture a wetting film of the phase rich in
sharp-kink approximation for the fluid density profile aroundthat component can develop on the colloids and this leads
the hard-spherical cavity. By minimizing the excess grandsubsequently to a variety of interesting phenomena, includ-
potential as a function of the thickness of the drying film weing attractive effective interactions, bridge formation, and
determine the equilibrium thickne$g(R, 1) and the result- possible coagulation of the colloidal particld®,21,23. Itis
ing wall-liquid surface tension. An exact statistical mechani-also important to consider potential implications of our re-
cal sum rule[2,3] is then used to obtain the fluid density sults for understanding the physics and chemistry of solva-
p(R*, 1) at the point of contact=R* with the wall. The tion. Chandler and co-workef[&3] have argued that a proper
behavior of the surface tension and contact density in bothinderstanding of hydrophobic effects, at varying length
regimes is identified. Section Ill describes a nonlocal DFTScales, should incorporate drying phenomena. In particular
for our model fluid. The functional that we employ uses thethey point to the importance of the length scle which is
Rosenfeld[19] fundamental measures theory to treat the~1 um for water at room temperature and presdiije We
hard-core repulsive part of the pair potential while treatingdiscuss briefly the repercussions of our work for determining
the long-ranged attractive tai.,(r) in a simple mean-field solvation fr_ee ene_rgigs, i.e., the work requiregl to insert_ a
fashion: for a uniform fluid the pair direct correlation func- hard-spherical cavity into a solvent, as a function of cavity
tion resulting from our functional i(r)=cydr)—Bdau(r), radms and solvent chemical potential, leaving a more de-
where 8=(ksT)"* andc,dr) is the hard-sphere direct corre- tailed treatment to a later paper.
lation function obtained from Percus-Yevick theory. The den-
sity profiles and thermodynamic functions which result from
minimizing this functional are known to satisfy both the Il. THE EFFECTIVE INTERFACIAL POTENTIAL
Gibbs adsorption theorem and the sum rule for the contact
density [9]. This consistency is crucially important when  We begin with a coarse-grained effective Hamiltonian ap-
seeking subtle effects, especially contributions to thermodyproach as used in Ref9]; for general reviews see Refs.
namic quantities that are nonanalytic in some parameter. I1fiLl0,11]. In this, sharp-kink, approximation the density of the
Sec. IV we present the results of our numerical DFT calcufluid at a hard spherical walradiusR) is taken to be
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pressure of the liquid reservair, arp)g is the pressure of the
(metastable gas. For small values obu= u—pus(T), the

deviation from bulk coexistence, the pressure difference
GAS LIQUID

HARD WALL PP} = (p1 = pg) Ot 3

wherep; andpg are the bulk coexisting densities at tempera-
! ture T. Vy=4m]{ (R+1)*~R®]/3 is the volume of the gas dry-
ing film. The first two terms in Eq2) are surface contribu-
tions: y,4(R, u) and yy(R+1) are the surface tensions of the
wall/gas and gas/liquid interfaces anq, and Ay are the
corresponding areas. The interaction between the two inter-
faces is given by the third term and the binding potential,
o(l;R), is derived using the sharp-kink approximation in the
Appendix. For the particular case of drying at a hard-
spherical surface one findsee Eq(A14)]

M
L/

| 12 |
FIG. 1. Geometry for a hard-sphere fluid in contact with a pla- o(l;R) = wll ;00){1 et O(E |n<§>)] (4)
nar wall, showing a fluid particle of diameterat the contact sur-

face for the density profiléh=0). In the sharp-kink approximation jith the planar limit of the binding potential given by
for drying there is a film of fluid with the gasdensing between

h=0 andh=I. For h>1 the density is that of the bulk liquig. b 1
ity i ulk liquig w(l;00) = o + O(|_8> (5)
0, r<R, where the coefficient of the familidr? term is
- +
p(r)=1pg R<r<R+lI, (1) b:pg(p|—pg)7760'6/3. ©6)
p, r>R+lI,

b is the energy parametéor the Hamaker constanappro-
where p is the density of the liquid reservoir at chemical priate for hard-wall drying in a fluid in which the attractive
potential u and py is the density of themetastablggas at  part of the fluid-fluid pair potential is given by a Lennard-
the same value of. This is illustrated in Figs. 1 and 2; Fig. Joneg(LJ) form—see Eq(21) below. € is the LJ well depth
1 shows the planar systefR=«). The excesgover bulk  ando is the diameter.
grand potential is then written as a function of the drying In the planar limit(R=o) minimization of Eq.(2), with
film thicknessl, Eq. (5), yields complete drying foall temperature§ <T,,

ex— - . the bulk critical temperature, since the paraméter always
Q7= 0% PVace= WgRAug 1R DAG+ iR That is, in the it 0", the equilibrium film

+(p- Dg)Vg (2)  thickness eq— © and Q% Ayg— Yiug(*, tco) + Yg(*).
where the accessible voluMé,..=Viga—47R3/3, p is the For the spherical case we assufgg<R and expand in
powers ofl /R in Eqg. (2):
QeX

21 b
LIQUID = Yug(R ) + 7g|(R)(l + E) et (o1 = pg)oul (7)

Aug
and we have ignored the difference betwegf(R) and
¥g(R+1). Higher order terms are not displayed.

Minimizing Eq. (7) with respect td gives the equilibrium
drying film thickness

( 2b )1/3
| — 8
0™\ (py = py) o + 27g(=)IR ®

where, consistent with the leading-order analysis, the planar

value is used for the gas-liquid surface tensigtR). In the

limit du— 0, Eq.(8) predicts that the drying film thickens as

RY3[12-14. The nonzero Laplace pressure arising from the

curved gas-liquid interface prevents the film thickness from
FIG. 2. The equivalent system in spherical geometry showing &lIVerging. The key observation from Eq3) and(8) is that

fluid particle at the contact radius for the density profileR). In ~ Within this coarse-grained effective Hamiltonian approach

the sharp-kink approximation there is a film of fluid with the gas the undersaturation pressuig—py)éu plays the same role

densityp! betweerr =R andr=R+|. Forr >R+ the density is that as the Laplace pressureygd«)/R. More specifically, the

of the bulk liquid p. equilibrium thickness of the drying film at bulk coexistence
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on the spherical substrate is equal to that for the same fluid at ©)2p\1/3

a planar substrate when the reservoir is at a chemical poten-Yu(R.#co) = Yug(%: ttco) + (=) + 3(%) + E%T
tial deviation su=2y4/R(p;—pg). This equivalence between

the two pressures has been recognized by several authors, +O(R™*9), (14)
e.g., Refs[12,15-17. Less well recognized are the implica-

i . : o W
tions for the excess grand potential and its derivatives Wlt@ions of surface tension. This term R which arises from

respect to thermodynamic fiel@,9] and it is these implica- ., hihytions beyond the sharp kink, combines contributions
tions that we investigate here for the case of dispersiog ., the surface tensions of the walllgas and gas/liquid in-
forces, €., _for a fImd-f_Imd pair DOtEF‘“a' decaymg_ 356_ terfaces and from the binding potential. Note that the
Substituting Eq.(8) into Eq. (7) gives the equilibrium o4 4ing_order curvature correction varies Ri€'3, implying
wall-liquid surface tension, shown to leading order: that the first derivative ofy,, with respect to the curvature
e T R* would diverge in the limitR™*— 0.
YR ) = Qe A7R= (R, ) + 7gi(R) + 5(20)°p This striking nonanalytic behavior of a thermodynamic
9 quantity is the analog for a power-law fluid-fluid potential of
the result found in Ref{9] for drying with short-ranged po-
where tentials. There the corresponding nonanalytic contribution to
the surface tension varies Bs! In(aR), where the constarat
~ 2y () is not known. In the present case the parambtés deter-
P=(p — pyou+ JR— (10)  mined, once the pair potential is specified and the coexisting
densities are determined—see [E§). Note that in Eq(14)
we have not included the higher-ord®T In R contributions.
We can use the results derived above to calculate the den-
sity of the fluid at the point of contagt(R*, u). There is an
_ 3 N o3 exact statistical mechanical sum ryi relating the contact
Yo% 1) = Y2, 1) + ¥gi(20) + 5(20) Y (py — pg) O] density at a hard wall to the wall/fluid surface tensigg
(11) and the bulk pressurg:

here &; is some microscopic length ar¥l has the dimen-

For a planar hard wal(R=«) the surface tension in the
sharp-kink approximation reduces to

2 1%
which implies that the critical exponent characterizing the ksTp(R*,w)=p+ ot (ﬂ) ) (15)
T

free energy for complete drying ig;°=4/3 [10,11. If one R dR

attempts a microscopic treatment, beyond the sharp kinkyote that in the planar limitR™1—0, the contact density

then a term linear iSu should arise, in addition to possible reduces to the well-known resyit0*, u)=p/kgT. If we set

higher order nonanalytic terms. su=0" we can employ Eq(14) and we find for the contact

The curvature dependence of tiieondrying wall/gas  density of the liquid at coexistence

and gas/liquid surface tensions is the subject of much litera- 2\ 13

ture, €.g.,[2,12,20,24-2F In the Appendix we use the 1 g+ ,"y=p+ 2wg( @ Heo) | 27g(*) | 4< Yal(*) b)

sharp-kink approximation to calculate the surface tension for- e R R R®

both interfaces. For dispersion forces there #&i@,2Q +O(R?) (16)

R2In R corrections to the planar limiting values—see Eq. '

(A12) but note that within the sharp-kink approximation This result is interesting for two reasons; it states that the

there is no term irR™%, i.e., the Tolmar{24] length is iden-  contact density depends on the surface tension of the gas/

tically zero. However, beyond the sharp-kink approximationliquid interface, which can be very far from the wall,

it is likely that the leading-order corrections are proportional~RY3) when R is very large and(ii) the contact density

to R™%, so we assume acquires a termcR™%3 which is nonanalytic in the curvature
(R™Y). The corresponding term for a short-ranged potential

In(R))} (12 varies asR 2In(aR) [9].

2 ¢}
’ng(R,,LL) = 'YWg(oc,,U«)|:1 - % + O(

R2 Of course one need not proceed directly to the lifpit
=0. As pointed out in Ref[12] and discussed in detail for
short-ranged forces in Ref6] one should distinguish be-

26%' In(R) tween two regimes of interfacial behavior as defined by the
¥9(R) = n.(w){l Rt 0(? 13 jength scale
! __2%(®)
wheredt? and &Y are the Tolman lengths for the wall/gas and = -poon (17
| g

gas/liquid interfaces, respectiveljExplicit results for the
planar tensions derived from the sharp-kink approximatiorFor the regimeR< R, for which Sy must be kept very small
are given in the Appendix—see Eq#7) and(A8).] Setting  (recall thatR> ¢ for the coarse-grained approach to be ap-
ou=0 in Eq.(9) and employing Eqs(12) and(13) we find  plicable) we recover, at leading order, the resulish and
that the wall/liquid surface tension for the hard-spherical(16); the leading-order corrections to these results are linear
substrate with liquid at bulk coexistence reduces to in Su. On the other hand, foR>R., which corresponds to
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approaching the planar limit at nonzefp, we expand in
powers ofR./R in Eq. (9) and find BFidlpl = J dr p(r)[In A%(r) - 1]
13
Yol (R 1) = Y (o0, ) + 27’9'(00)( 2b ) + 2o where g=1/(kgT) and A is the thermal de Broglie wave-
R \(p = pg)ou R length.
B R.\? Our model fluid has a hard-sphere repulsive core and for
+O(R?INR) + O(ﬁ) (18)  the attractive interaction potential between fluid particles we

use the attractive part of the Lennard-Jones potential:
where the planar surface tensiog,(«,«) is given by Eq.

12 6
(12). In this regime one has a power series in the curvature 46{(2) - (i‘) } > i
R%, as for the case of short-ranged potentj@l but there Panlr) = r r (22)
are additionaR ™2 In R terms arising from dispersion forces, —¢, < i

Egs.(12) and (13), which we now include explicitly. Since e
3 8; should depend very weakly o, the coefficient of the ~ Wherery=2"%c.

R! contribution in Eq.(18) should increase a&u Y3 when The hard-sphere part of the excess free-energy functional
Su is reduced at fixed largR, provided one remains in the Fhdp] is treated by means of Rosenfeld’s fundamental mea-
regimeR.<R; we cannot allowsu to vanish. sures theory[19]. His functional for a single-component
Similarly one can calculate the contact density in thehard-sphere fluid is
same regimeR>R;, and obtain
ol =p+ T4 Lo, ag) #dol [ o v, 2

o L _ where the reduced free-energy density is taken to be
Thus from the coefficient of thB™ term in the contact den-

sity one can obtain the planar surface tension at nongero _ NN, — Ny - Ny n%— 3N, - Ny
This contains the nonanalytitu? term [see Eq(11)] asso- P(ng) =—NoIn(1-ng) 1-n, * 24m(1-ng?
ciated with complete drying. The remaining contributions in . N
Eq. (19) constitute a power series in the curvati®e; cf.  The weighted densities, are calculated from
[6]. Note that there is n&3In R contribution.

The results presented above pertain to a coarse-grained na(rl):f drop(r)w,(ry—rsp), (23)
effective Hamiltonian description of the drying film. One
might expect that thdorm of the leading-order results is
maintained in a fully microscopic treatment in which the
surface tensions are not those obtained from the sharp-kin

where the four scalar weight functions for hard spheres of
iametero are

approximation; rather they are those obtained from a proper w3(r)=0(a/2-r1), wy(r)=48(al2-r),
microscopic theory. In Refd6,9] this assertion was tested

for a square-well fluid. Here we examine the predictions of Wi (r) Wy(r)

the coarse-grained theory for a model fluid with a hard core wy(r) = Py Wo(r) = e

plus a power-law attractive potential using the same DFT as

used in Refs.[6,9]. In this case the predictions involve and the two vector weight functions are given by
power-law nonanalyticities rather than logarithms and, sig-

nificantly, we know the relevaramplitudes since these de- Wo(r) = [5(0/2 1), w(r) = wo(r)
pend on the energy parameterwhose value is determined. 2 r ' ! 270
[ll. DENSITY FUNCTIONAL THEORY For the homogeneous hard-sphere fluid the free-energy den-

In density functional theory the free energy of an inhomo-Sity reduces to the Percus-Yevick compressibility result and
geneous fluid is expressed as a functional of the averagd® Pair direct correlation function obtained by taking two
one-body density(r). DFT methods are widely used to in- functional qlenva'uves of]-"hip_)] is .|dent|cal to.that from.
vestigate equilibrium structure and thermodynamic functiond’€rcus-Yevick theory19]. This weighted-density approxi-
such as surface tensions. For a review of DFT see[R6f. ~ mation incorporates short-range correlations so that oscilla-
The free-energy functional is not known exactly. In the ap-°rY density profiles can result. Moreover it also describes
proximation that we employ the attractive part of the intrin- COITectly the density at the hard wall so that the sum rule

sic Helmholtz free energy functional is treated as a type ofEd- (19)] and the Gibbs adsorption theorem are satisfied.
perturbation about a hard-sphere reference fluid: This was confirmed earlier in numerical studies for hard

spheres adsorbed at hard curved cavifiglsand checked
_ 1 carefully in the present study for the function@0). In our
Flpl=Fidpl+ Fodpl* 2 f drlf drap(r)p(r2) éanlr 1) calculations we take the hard-sphere diamet¢o be equal
(20) to the diameter entering the Lennard-Jones pote(Ribl
The equilibrium density profile is found by minimizing
wherer,=|r,—r5,|. The ideal gas term is simply the grand potential functional:
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Q,[p]l=Fpl- f dr[ = V(r)]p(r) (24) 7.4x10°
where u is the chemical potential and(r) is the external
hard-wall potential, 225107
V=1 =R 25 :
r)= 0  otherwise. (25 =

Applying the variational principle with Eq(20) gives the 70

Euler-Lagrange equation

OFnd p]

w=V(ry) + pig(p(r)) + ————+ | drop(rp) dan(ri—ro) T IR - R S V R—

op(rq) o/R

(26) FIG. 3. Surface tension of the gas at a hard-spherical wall
where u;q is the ideal gas chemical potential. The third termof radiusR-o/2, at T=0.7T; and u=pu, (®). The line is a fit
in Eq. (26) is evaluated by substituting E(3) into Eq.(22)  to the equation Bo?y,y(R) =ag+a,0/R+a; 1p(0/R)? IN(2R/T i)
and taking the derivative to obtain +ay(a/R)%. The resulting coefficients amg=7.3765x 1074, which
57 Ip] . isoglos? ;o 7th3?7ér;j<elp§2dentl); ;}Iettlezpsingd_ planar surf_aceTteInsion
hd P B2 V() =T7. , 4 =7.7X giving a negative Tol-
Sp(ry) = | drp> EWQ(H —r2). (27) man Icgength M o=-a,/(2ay)=-0.05, @, |,=—1.70x 107 (sharp-
“ kink prediction=-1.7%10%), and a,=-1.7x10* (sharp-kink
Note that the final term in Eq(26), which constitutes a prediction=-1.4<10"%.
simple mean-field-like contribution to the intrinsic chemical
potential, is long ranged for power-law potentials such asential. The sharp-kink approximation for the surface tension
Lennard-Jones. Equatig@6) was solved numerically to find does not have aR™ term but if a more realistic profile is
the equilibrium density profile. From this the correspondingassumed then such contributions do arise from the dispersion
equilibrium excess grand potentiﬁﬁg was calculated. Note forces.
that in our calculations the dividing surface is located at The coefficient of theR 2 In R term extracted from the fit
=R", the radius where the density profile first becomes noncan be compared with the value predicted by the sharp-kink
zero. The physical radius of the hard wallRs-o/2—see  approximationEq. (A11)]. The agreement is about 1 part in
Figs. 1 and 2. The liquid-gas coexistence curve is determined00. Numerical results at other state points show similar con-
from the bulk free energy obtained by settipgr) to be  sistency. This is convincing numerical evidence for the pres-
constant in Eq(20). The critical temperature is given by ence of theR2In R nonanalytic contribution to the surface
kgT./€=1.415 39. tension. The close agreement between the nume(ifar)
and sharp-kink values for this coefficient is perhaps surpris-
ing since the DFT density profiles are not sharp-kink-like, as
IV. NUMERICAL RESULTS the nonzero Tolman length clearly illustrates. However, it is
unlikely that deviations from the sharp-kink behavior in the
density profilegwhich give rise to théx term and alter the
Initially the curvature dependence of the wall/gas surfaceoefficient of R™2) could lead to any additionaR2In R
tension was investigated. For this situation no drying film isterms in the surface tension. Indeed our analysis suggests
present. DFT results for a hard-sphere fluid at a hardthat the coefficient ofR2In R depends only on the bulk
spherical wall[5,8] suggest that the leading-order correctiondensities of the two phases so that the sharp-kink value

to the planar surface tension is linear in the curvature. Theyemains correct even when the microscopic profile is not
show no evidence for the existence of logarithmic termssharp-kink-like.

Rather the surface tension and the contact density are accu- The sharp-kink approximation also yields a value for the
rately represented by power-series expansior® nWhen  coefficient of theR™2 contribution. This is similar to the
long-ranged dispersion forces between the fluid moleculegalue we obtain from fitting to our DFT dataee caption to
are introduced then a nonanaly®t?In R term is predicted  Fig. 3) but is not identical because of corrections from the
by the sharp-kink approximation—see E@2). hard-sphere part of the potential and from {m@n-sharp-

In Fig. 3 we display the results for the surface tension akink) shape of the profile.
a function of curvature for a state at bulk coexistenge,
= ugo(T), with T=0.7T, for which the coexisting densities are
pgo>=0.018 026 anghc>=0.667 379. A least squares fit to
the data gives a positive coefficient for tRe' term which Figure 4 shows density profiles for the liquid at bulk co-
corresponds to a small negative Tolman length. This term hagxistenceu/(T), at the same temperatufe=0.7T, in con-
contributions from both the short-ranged repulsive hardtact with large hard spheres of various radii. Provideds
sphere potential and from the attractive Lennard-Jones pasufficiently large these profiles are nearly identical to those at

A. Wall/gas surface tension

B. Wall/liquid (drying) density profiles
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FIG. 4. Density profiles of the liquid adsorbed at hard walls for
T=0.7T.. The broken curves refer to the liquid at bulk coexistence,
,uZO(T), at spherical walls of various radR—-o¢/2. The symbols

refer to the liquid near a planar wall at chemical potential deviation . . .
g P P —ol/2, both at coexistencé®) and off coexistence at variousu

= p— e T)=2vg()/[R(p —pg)]. For each radius, except the _"°~ o .
two smallest ones, the two profiles are indistinguishable. The solid » HeolT) (O). There are also data for a liquid off coexistence,

line refers to the gas at_(T) at a planar wall. The inset shows the adsorped at a p_Iar_lar hard wai). The straight line with slope
; co —-1/3 is the prediction of Eq8).
region very close to the wall.

FIG. 5. Log-log plot of adsorption per unit area versggo®
=[(p~pg) S+ 2v4(*)/R]Bo> at T=0.7T.. The DFT data corre-
spond to a liquid adsorbed at spherical walls of different ralii,

a planar hard wall with Su=2y4()/[R(p—pg)]. This  can also be obtained from the relatidrr —0Qg(R, 1)/ du.
equivalence of microscopic density profiles was also obAn equilibrium film thickness can then be defined via
served for systems with short-ranged potentj8ls It holds

down to quite a small radiuéR~100), where there is no | _&
thick drying film and where the relevant bulk densities are ed 47R%(p, —pg)'

clearly different. This is a surprising result, first because thq:i ure 5 shows a loa-loa plot of adsorotion per unit area
equivalence between bulk fie{dndersaturation pressurer vegrsus the (dimensignleg)sppressure 5{3535[(%—/39)5#

a planar wall and curvatur@_aplace pressujeredicted by ) .

Eqg. (8) might be expected to apply only to the film thickneser27"‘9’(30)/R]'B‘T3 [see Eq(lO)_]. The data |r_10Iude adsorption

leq NOt necessarily to the whole microscopic profile. Secondf.It a planar sgbstrate for a liquid off coexistence and adsarp-

one observes in Fig. 4 that the shapes of the profilesRfor lon at sphenpal substrates .on.and off coexistence. The ad-

<1000 are far from the sharp-kink profile assumed in theSOrPtion predmtgd by substituting EB) into Eq. (29) is
shown as a straight line on the plot. In the region where the

derivation of Eq.(8). . ; ! .
The inset demonstrates that fl@e 5 X 1o when there magnitude of the adsorption and therefore the drying film
’ thickness is largél.,> 120) this line gives a good fit to the

is a very thick drying film present, the density close to the X 4 _ ; _
numerical results. For thinner drying films the sharp-kink

wall approaches that of the bulk coexisting gas,u.,(T), at A ;
gapproximation appears to break down, although the equiva-

a planar wall. Therefore we expect that the total wall/liqui
surface tension can indeed be written as the sum of the sepL‘f—nce between the pressureyge<)/R and(pi ~pg) u holds
even when the sphere radius is small and there is no thick

rate wall/gas and gas/liquid tensions plus a term for the in='="" ™ =11 )
teraction between the two interfaces. For smaller valugg of drying film, i.e., the data for the planar and curved walls stil
one sees that the density near contact with the wall is great&Pllapse onto a single curve.

than that for the gas at coexistence but the equivalence be-

tween the profiles for the two wall/liquid interfaces remains D. Walllliquid surface tension

valid. In Fig. 6 we plot the difference between the wall/liquid

and wall/gas surface tensionat ug,) for T=0.7T, versus

. ) o ... olRfor very large values oR/o. According to Eq(14) we
_Within the effective Hamiltonian approach the drying film g, ¢t the ‘leading-order correction to the planar gas-liquid

thicknesd is the natural variable. The corresponding thermo-ansion to be Byg|(°°)2b]l/3 R23 A least squares fit to the

(29)

C. Adsorption at the wall/liquid interface

dynamic quantity is the Gibbs adsorption numerical DFT data permits a comparison with the predicted
- coefficient of theR™?® term. The latter was calculated using
(R p) = 47Tf rp(r) - pldr, (28)  the theoreticalsharp-kink value forb [Eq. (6)] which gives
R Bb=0.012 372 for this temperature and the numerical result

wherep is the reservoir density. Within DFT the adsorption for the planar liquid/gas surface tensiomo?yy (%, u)
was found by numerically integrating the density profile. It =0.545 196. The agreement is better than 0.2%.
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FIG. 6. The difference between the surface tensions in the lig- F!G. 8. As for Fig. 7 but withB6u=1.53X 10°° (0/Rc=9.11

uid, at,uzo(T), and gasu.y(T), phases, adsorbed at hard-sphericalxure)-

walls of radiusR—-a/2, versus curvature foFr=0.7T; (®). The line

shows a fit to the DFT data assumiRg?® dependencésee texx larger values ofsu "2 the higher-ordeR25,~%° term be-

comes significant, causing the results to deviate from a

In order to test the validity of the expansion of the surfacestraight line.

tension in powers oR™* for R>R; [Eq. (18)], the surface

tension is plotted as a function of curvature at two different

fixed chemical potentials near coexistence. The results, for E. Contact density at the wall

large radius, are shown in Figs. 7 and 8. The intercepts of the |, Fig. 11 we plot the difference between the contact den-

linear fits give excellent agreement with the independentlyjiies at the wall for the coexisting liquid py(R*)

calculated, within DFT, planar surface tensiopse,u) at = p(R* M+0) and gas,pgdRY)=p(R*, g, phaseslqversus
- Mo/ ga - 1 Mo/

the r_espective cher_nical potenti_als; typi_cally b_etter than Turvature atT=0.7T.. By subtracting the wall/gas contact
part in 5x 10%. The f|ts. also confirm th"’!t in the imig— co density we eliminate the first two terms in Ed.6) so that
and f0r5,u.¢0.the. Ieadmg-order correction to the plana_r SUthe leading-order term in the difference of contact densities
face tension s "”e?‘r n the curvature; see EIp). This g 2B03yg()/R. By performing a least squares fit f& o
contrasts with the situation whedu=0, i.e.,Re=2, Where  _ 165 oo Fig. 11 we extract the gradient and compare with

. 3 .
theTiurfg_?fe tensmg r:as a rl(r)]nanalgﬂlé tterrr_l (Flgt. 6. heri trlwe independently calculated planar gas/liquid tension. The

€ difierence between the surface e”S'O_q,;’f‘ asp erlC%greement is better than 1 part in*1@his confirms that the
and at a planar substrate is plotted ver&88u) ' for two

i h IINiquid interfag&R", u.,
different substrate radii in Figs. 9 and 10. The gradients oFOﬂtaCt density at the walllliquid interfageR", u,) does
the linear fits are close to those predicted by Elf). At

T T T T T I
. . | - - 14x10° - 51
0.545968 — — =
+ 1.3x10° - £ .
= | i
Nb ’5: s
~ & 1.2x10° .
. =
3 0.545967 - — &
= [} B 7
[<=} <o}
L i 1.1x10” .
0.545966 — — . | . | . | . | L 1
20 40 60 80 100 120
-1/3
. | . | . | . (Béw)

6.0x10°  80x10°  Lox107  12x107  1.4x10” _ _ _ _
G/R FIG. 9. The difference in surface tension between a spherical

and a planar substrate versiygsu) 23, for the liquid adsorbed at a
FIG. 7. The surface tension for liquids off coexisten@su hard wall of radiusR—o/2 with R=8 X 1Pc, for T=0.7T, (O). The
=4.78x 1077 (0/R,=2.85x 10°7), adsorbed at hard-spherical walls straight line shows a fit to the DFT data in the linear region and has
of radiusR-o/2, versus curvature foF=0.7T, (O). The straight gradient 4.4% 10 (compared to a predicted gradient of 4.59
line shows a linear fit to the DFT dafaee Eq(18)]. X 1078); see Eq(18).
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FIG. 10. As for Fig. 9 but withR=1.6x 10’¢. The linear fit to 6.0x10~  8.0x10 1‘071120 L2x10° 1.4x10
G,

the DFT data has gradient 2.24.0°8 (compared to a predicted
gradient of 2.2% 10°8). FIG. 12. The contact density for liquids off coexisten@$u
=4.78x 1077 (¢/R,=2.85x 10°7), adsorbed at hard spherical walls,
acquire a contribution proportional to the Laplace pressure ofs a function of the curvaturg. The gradient of the straight line fit is
the gas/liquid interface located far from the wall, i.e., neart 09193 compared to a predicted gradient of 1.09191 -se€lHy.
R+l asR™1—0. A plot equivalent to Fig. 11 was presented AP 'S the contact density at a planar wa=<, for a liquid at the

in Fig. 2 of Ref.[9] for the case of a square-well fluid ad- same chemical potential deviatiai.

sorbed at a hard-spherical wall. In the latter case there was

good numerical evidence for the presence of the next to lead@gain the agreement between the gradients of the linear fits
ing orderR?In(aR) term appropriate to short-range forces. and those predicted by the theory is very good, to 1 part in
However it was difficult to extract accurately the coefficient 10%- As emphasized in Ref6], it is important to confirm the

of this term. For the case of dispersion forces described her@lidity of Eq. (19) since this is the route employed by Still-
we are able to fit the difference in contact densities verynger and Cottef7] in their derivation of an exact formula
accurately by including theR™3 next to leading order for the planar hard-wall fluid surfgce tensmnt Note that for
term—see Eq(16). The coefficient we obtain from the nu- Small values of35u very large radiiR are required to enter
merical fit agrees with the predicted value #[4,,()?b]3  the regime of validity of Eq(19).

to better than 0.5%.

Off coexistence the contact density at spherical substrates
with large radii, chosen so th&>R., is expected to be In this section we consider what happens when the curva-
linear in the curvaturéEq. (19)]. The predicted gradient is ture is negativeR 1< 0. The fluid is now adsorbed on the
2By, 1), where the planar wall/liquid surface tension atinside surface of the hard-spherical cavity as shown in
chemical potential. can again be found independently. Fig- Fig. 14. We can remain in the grand-canonical ensemble by
ures 12 and 13 show graphs of contact density against cullowing solvent particles to be “ghosted” into the sphere
vature for two different, fixed chemical potentials. Oncefrom a reservoir at fixedu,T). Once again we takéu>0

so that the reservoir is a liquid state. Following the coarse-

V. FLUID INSIDE A HARD SPHERICAL CAVITY

P grained Hamiltonian approach outlined in Sec. Il we obtain
012 1= 410 ' ' N the excess grand potential per unit area:
0.10 - _
“o | 2a0° - - ) 1.4x107 . . . , .
e 0081 T 1 -
Tz L e
o 0 o o 12107 7
n 0.06 = 2x10 4x1Q), /,,» | . .
+Q4 2
~z [~
o 004 - a 4
= A LOox107 - .
7~ +‘z
0.02 - . =
-8 _|
0.00 | | | | 8.0x10
~0.00 0.02 0.04 0.06 0.08 0.10
o/R
FIG. 11. The difference between contact densities in the liquid, 6.0x10" — — — — .
ue(T), and gasugy(T), phases adsorbed at hard-spherical walls of 6.0x10°  8.0x10° 1.0x10° 12x10  1.4xI10

radii R—a/2, versus curvature fofF=0.7T; (full line). A fit to the

linear portion near the origi(see inset for data at larg® is shown

o/R

FIG. 13. As for Fig. 12 but withBsu=1.53x10° (o/R,

as a dotted line. The gradient is 1.0904, which is close to=9.11x1079). The gradient of the straight line fit is 1.092 33 com-

2B0?yg(*)=1.090 39 predicted by Eq16).

pared to a predicted gradient of 1.092 28.
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HARD WALL HARD WALL
AN AN
o/ ol

FIG. 14. The fluid inside a hard-spherical cavity, i.e., curvature FIG. 15. Capillary evaporation in a hard-spherical cavity: In the
R1<0, showing a fluid particle of diameterat the contact surface sharp-kink approximation the cavity is filled with fluid with the gas
for the density profile. In the sharp-kink approximation there is adensityp;.
drying film with the gas density; betweenr=|R| andr=|R|-I,

and the density in the central regior< |R|—I is that of the bulk
v gonIR 0F 0+ g, _

i 1
liquid p. = =2 (; = pg) IR (33
A Ay 30
& 2 b The equilibrium state is the state with the minimum excess
A Ywg(R ) + ¥g(R)| 1= R et (b1 = pg) O grand potential per unit area. Therefore capillary evaporation
¢ occurs ierx:QgX. Combining Eqgs(30), (31), and(33), we
(B0 find that
and minimizing with respect tbgives the equilibrium drying ( Vo= 3yyi() 34
film thickness P1~ Pg) O = (Ravap— 3led2)
2b 1/3 or
lea™ ( (p1 = pg) S — 2y (=)/|R ) ' (3 3y 3R
- == (35)

ap
The Laplace pressure from the curved liquid/gas interface 2 2

now acts toincreasethe thickness of the gas layer and the for Ry, the radiusR), for which capillary evaporation oc-
equilibrium film thickness on the inside surface of the sphericurs at fixeddu. loq is given by Eq.(31). [The equivalent
cal hard wall isgreater than that at the planar wall for the result for a system with short-ranged interparticle forces is
same value oBu; cf. Eq.(8). (1= Ppg) O =34 (®)/ (Reyap~leq, Where we have assumed
For fixed, nonzerodu the equilibrium film thickness is  |,,>bulk correlation length of the gas phas&hus evapo-
continuous througtR*=0 and providedR/>R. the wall/  ration occurs before we reach the nonanalytic regRve
liquid surface tension hagapart from the ubiquitous -R; i.e.,Ryqp>R:. As we decrease the radius of the cavity
R2In|R| term) a power-series expansion in the curvaturethrough|R| =Ry, there is a discontinuougirst-orde) phase

[see Eq(18)]: transition from a state in which the cavity contains liquid
with a finite film of gas next to the surface to a state where
_ 2yg() 2b EERD P the hard-spherical cavity is completely filled with the gas

Yul(Ro) = Y (o0, ) + R \(p-pgon "R phase. However, on decreasifg, R, increases so that the

) validity of Eq. (32) is restricted to large values ¢R| and
+O(R2In|R)) + O(Ec) _ (32) Revap IS Iarger: In the limitdu— 0*, bulk cqemsten_cel, therg is
R complete drying at the planar wall and introducingnitesi-
mal negative curvature results in the hard cavity being filled
As we decrease the size of the cavity furties., the curva- with the gas phase, i.e., capillary evaporation occurs
ture R™! becomes more negativ¢he film thicknesd in- immediately.
creases and as we approd®h—R. the denominator in Eq. We should emphasize that the treatment of evaporation
(31 vanishes, implying that the film thickness diverges.presented above is mean field in character. For a finite inte-
However, in finding the global minimum in the excess grandrior radius|R| there is, of course, no true phase transition as
potential we must also consider the state in which the cavity finite volume of fluid is involved. Nevertheless, for a large
is filled with the metastable gas phase, i.e., capillary evaporadius> o we expect the first-order evaporation transition to
ration [18] (see Fig. 1% The excess grand potential for this be only weakly rounded, in sagu, so that the adsorptioh
configuration is (order parametgrwould not exhibit a discontinuous jump;
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rather, it would show an extremely rapid change in slope. (6) We find that the isomorphism between a system at a
Such a consideration does not affect the overall validity ofplanar substrate off coexistence by an amafmwiand one at
the arguments regarding crossover from nonanalytic to ana& spherical substrate au=0" whose radius is given by
lytic behavior and the onset of evaporation. 2yg(*)/R=(p;—py) 6 applies to thewhole density profile,
provided the hard cavity radiu8= 1000 There is no obvi-
ous reason why this isomorphism should remain valid down
VI. CONCLUSIONS to such small radii. We know that in the limit of lardethe
drying film thickness and therefore the adsorptidoshould

In this paper we have investigated the effects of curvaturee equivalent. We also know that the contact densities should
on the adsorption properties of a simple fluid, described bye equivalent since these can be viewed as thermodynamic
the fluid-fluid pair potential of Eq.21), near a hard-spherical quantities determined by the surface tension—see(Es).
wall. We find that the results of a microscopic DFT approachBut there is no compelling reason to expect that the profiles
(see Sec. IYare completely consistent with those predictedthemselves would be very close for such a wide rangB.of
by a coarse-grained effective interfacial Hamiltonian in Sec. Our DFT results refer to a single temperatre0.7T,.

[l. The main conclusions are as follows. We have carried out a few calculations for another tempera-

(1) We confirm(see Fig. 3the sharp-kink prediction that tureT=0.6T,. The results are in equally good agreement with
there is arR™2In R term in the surface tension of a fluid with the predictions of Sec. II.
an attractive #° tail in the pair potential by considering the  Both theoretical approaches employed here omit effects of
gas atu=pug, adsorbed at a hard-spherical wall. However,capillary-wave fluctuations in the gas-liquid interface that
the leading-order correction to the planar surface tension igevelop near =R+l For complete wetting/drying at a pla-
proportional toR ™2, nar interface when dispersion forcgsower-law interaction

(2) Our DFT results for the Gibbs adsorptibh(see Fig. potentialg are present, fluctuations are not expected to alter
5) confirm that the thickness of the drying film diverges asthe results of the corresponding mean-field treatnj26y.

RY3 asR—, for our model fluid at bulk coexistencd«  This follows since the upper critical dimensiah for the
=0", in agreement with earlier predictiorj42-14. More-  complete wetting phase transition ig,=(2+3n)/(2+n)
over, the excellent data collapse in DFT results fodem-  wheren is the exponent describing the decay of the binding
onstrates that the isomorphism between the undersaturatigiotentialw(l;») ~ 1™ recall thatn=2 for dispersion forces
pressure(p;—pg)ou at a planar substrate and the Laplacein d=3 [see Eq(5)]. Thus for any finiten, d,< 3 [10,11,29,
pressure 2y (~)/R remains valid down to rather small radii and fluctuations should not affect the results of a mean-field
R, where thick drying films are no longer present. This sug-analysis of complete drying at a planar surface. Since, to
gests that as regards the adsorpftiand therefore the bind- leading order il /R, incorporating curvature simply replaces
ing potentia) the isomorphism may be valid beyond leading (p—pgy)sp at a planar wall by the sum(p—pg)dou
order. Note that the total surface tension for these two sys+2y;(-)/R we conjecture that our mean-field results for
tems is not expected to be the same beyond leading ordebnanalytic contributions to interfacial properties should be
because of th&* terms in the individual wall/gas and gas/ unaltered by incorporating capillary wave fluctuations, i.e.,
liquid surface tensions which arise if the density profile isgyr predicted power laws and amplitudes shouldeact

not sharp-kink-like. [30].

(3) We have showrisee Fig. § that the wall/liquid sur- Of course the same conclusion holds for a model fluid
face tension forsu=0" has a leading-ordeR™?° correction  with n+2, i.e., one for which the fluid-fluid pair potential
to the planar result. In addition we have confirmed that thQﬂecays as (™4 Often it is useful to consider these more
coefficient of this contributiofisee Eq(14)] calculated from  general models in the statistical mechanics of wetfi2g.
DFT is the same as that predicted by the coarse-grainegdor such a modele,~ RY™D for su=0%, yu(R,us,) ac-
Hamiltonian, with the parametdr given by the sharp-kink  quires a term inR™™Y  and p(R", ) a term in
approximation, i.e., E((6). R-(2n+D/(n+1).

(4) DFT results(see Fig. 11 confirm the validity of the When comparing our results with those derived for short-
predictions of Eq.16) for the contact density(R*,u) at ranged potentialgs,d] there are two key difference) dry-
su=0%, namely, kgTp(R", ug,) has a contribution propor- ing'in a fluid where dispersion forces are present leads to
tional to the Laplace pressuregg()/R plus a term iR, stronger (power-law nonanalytic contributions than the
The DFT results for the coefficients of both tRet andR™>®  |ogarithmic contributions which characterize drying with
terms are in excellent agreement with those predicted by thehort-ranged forces an@i) the +¢ decay of the interpar-
effective interfacial Hamiltonian. ticle potential results in wall/gas and gas/liquid interfacial

(5) In the analytic regim&R>R;, which requiressu>0,  tensions that include a term iR 2In R associated with the
the theory of Sec. Il predicts that the surface tension and th@ensity difference between the relevant bulk phases. Note
contact density should possess a power series expansion tifat we have not attempted to confirm the predid®eéin R
the curvatureR™%. Our DFT resultgsee Figs. 7-10, 12, and term in the gas/liquid tension using DFT.

13) confirm this prediction. In particular, the coefficient of  We conclude by turning to the physical relevance of our

R in the expansion ofsTp(R", 1) yields the planar surface results. There are several applications in fluid interfacial phe-
tensiony,,(«, u)—see Eq(19)—as is required in the classic nomena where it would be advantageous to be able to ex-
analysis of Ref[7]. press the interfacial free energy as an expansion in powers of
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the relevant curvatu(g). A well-known example is Hel- (hydrophobig substrates that correspond in the planar limit
frich’s analysis of fluctuating membrang81]. Recently to partial drying, i.e., the contact angte<180° rather than
Kdnig et al. [8] have provided arguments as to why it should #=180°, corresponding to complete drying. In this case a
be possible to expand the wall/fluid surface tengigtR, )  thick (diverging drying film of gas does not develop at the
and other surface thermodynamic quantities as a constaptanar wall/liquid interface but there can still be a region of
plus a contribution linear in the mean curvature and onelepleted fluid density with an accompanyidgrge wall/
linear in the Gaussian curvature of the convex surfacdiquid surface tension. Solvation under such circumstances
bounding the fluid. If one can make such an expansion thiss, of course, of much relevance in physical chemistry as is
would be most useful in colloid science for theories of deple-the transition from complete to partial drying. If the latter is
tion forces for hard particles of various shadé&s8]. Our  continuous(critical drying) new nonanalytic contributions
present work, as well as that in R¢6], shows that for a arise near the transition for the surface tension and for other
fluid undergoing gas-liquid coexistence it is nimt,genera]  interfacial quantities; when dispersion forces are present
possible to make such power-series expansions. These mubese are power-law contributions, different from those asso-
fail near the bulk critical point where the correlation length ciated with complete wetting33].

becomes comparable with the radiBRsand here we have As remarked in Sec. | and in Rd6] our theory is also
demonstrated that the series expansion breaks down, becaustevant to the case of wetting of a curved substrate by a
of drying, in the regimer<R<R.. For the regimeR>R.a  liquid film, u— u(T), or of a colloidal particle near phase
power-series expansion in the curvatgyeshould exist for separation in a binary solvent. In both cases we expect to
short-ranged fluid-fluid potentialgs] but, as we have seen find equivalent regimes of interfacial behavior, defined by
here, dispersion forces give rise to additioRafIn R con-  length scales equivalent R®,.

tributions to the surface tensions—see also R&d]. Clearly

the value ofR; is important. As emphasized e'arlié{t fo'r' ACKNOWLEDGMENTS
water at room temperature and pressure is surprisingly
large—about 1um. This follows becausg@du, or equiva- We have benefited from conversations with A. J. Archer,

lently Bo[p—pcy(T)], is so small. The same remark should S. Dietrich, P. Bryk, J. R. Henderson, M. Oettel, and J.
hold for many other liquids at atmospheric pressure. TheStecki. R. Roth provided much valuable advice and guidance
implication is that for many liquids one is usually in the in the early stages of our numerical calculations. We are
nonanalytic regimeR<R,, where the power-series expan- grateful for his assistance, for sharing his ideas, both experi-
sions are not applicable. mental and theoretical, on capillary evaporation during dis-

This observation has repercussions for the solvation of bigussions at the Institute “Zum Paulaner” and for valuable
solvophobic solute particles. Recall from the definition incomments on the manuscript. M.C.S. was supported by
Eq. (2) that the work required to create an empty cavity of EPSRC.
radiusR (equivalent to the excess chemical potential for in-
serting a single hard spheria the fluid at fixed(w,T) is APPENDIX: THE SHARP-KINK APPROXIMATION

FOR THE SURFACE TENSION AND BINDING POTENTIAL

(R, ) = p37R® + 47R2y(R, 36
#dR) = psm TRV R 1) (36) The sharp-kink approximation assumes that the fluid den-

wherep(u,T) is the pressure of the reservoir. For a liquid Sity is constant on each side of the interface, with a discon-
such as water under ambient conditions, whewép is very ~ tinuous jump at the interface. The surface tension is calcu-
small, the second, interfacial, term in E@6) plays a very latéd by comparing the free energy of the system with that of
important role and several authdi23,32 have emphasized @ Sémi-infinite amount of each of the two uniform fluid
that %,(R, ) will, because of drying, contain @arge) gas- Phaseg10]. A wall/fluid interface is treated in a very similar
liquid surface tension contribution for large solute radii. HereWaY t0 a fluid/fluid interface. For a hard wall which does not
we have shown that the work of cavity insertion per unit are£X€rt any attractive force on the fluid particles the wall den-
contains a positive nonanalytic leading-order correction tern$ity Pw IS Simply set to zero in the following equations.
proportional toR"?2 in addition to the termyy(c)—see Eq.

(14), providedR<R.. We shall discuss the implications of Planar interface
this result for the solvation of a hard sphere in a later publi- |, order to construct the interface imagine breaking an
cation. infinite amount of uniform fluid, number densipy, in half.

In real systems it is very difficult to create situations the notential due to a semi-infinite slab of fluid distazte
where the wall-fluid potential is perfectly hard, although re-away is

fractive index matching might bring about a good approxi-

mation in colloidal fluids. In practice there are oftemeak) , - * =

residual attractive interactions between the big particle and p(Z) =py| dz| 27 (T +Z)dr (A1)

the fluid. Provided the wall-fluid interparticle potential de- ‘ 0

cays no more slowly than® and complete drying still oc- whereg,(r,) is the attractive interaction potential between
curs y(R, e will acquire aR 2 contribution. However, if ~ fluid particles separated by distance. Carrying out the
these residual interactions are sufficiently attractive then onmtegration for the attractive part of a Lennard-Jones poten-
does not have complete drying. Rather one has solvophobiéal, defined by Eq(21), gives
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The free-energy cogper unit area of interfagdor breaking
apart the fluid is

2 oo
-a f v(Z)dZ (A3)
2Jo
and similarly for the second fluid of densipg,
s~
-2 J v(z))dZ. (A4)
2 0

Bringing the two semi-infinite pieces together increases the

free energy by

+ Plpzf v(z')dz (A5)

0

per unit area. The surface tension for the planar fluid/fluid PR = py

interface is therefore

Ap)? [~
712(°°)=-( g)J v(z')dZ
0

(A6)

where Ap=p,-p,. Thus for a liquid/gas interface\p=p

20° ( o ) } (A2)
- - - 7z, Z <rgn
min 3r3min 5rr1n(?n 2r?nin m
I
_9 2_ 4
Y1) = 1_6(AP) TEl min- (A7)

The analogous expression for the surface tension between a
solid wall of densityp,, and a fluid of density; is

-9 2 4 4
'wa(oo) - 1_677(p16rmin - Zplpwewfrmin,wf)a (A8)

where €,; and rp, ¢ refer to the interaction potential be-
tween wall and fluid particles, taken to be the same form as
Eqg. (21).

Spherical interface

The potential at a distancé from the center of the sphere
of fluid, number density,, radiusR (R<r’), is

f dr al|r’ = r])
r<kR

R (R-2 -
= Plf dzj 2mSha V(1" = 2+ $°]ds
-R 0

wheres?=x?+y? anduv(r’,R) is rotationally invariant so we
have taken’ to lie along thez axis for the purpose of evalu-

—pg: the difference in coexisting densities. For the potentialating the integral. For the Lennard-Jones attractive potential

in Eq. (A2), y15(e0) is calculated to be

of EqQ. (21) integration gives

9 6 48 40 8 3
9R2rﬁ1in . R . ot? o ot? . a® ) R< ' <R+
- - - ’ r [ mins
, 40 16" 40'(r'+R)® 4r'(r'+R)? 451’ +R°  6(r' +R)° m
o(r',R) = ¢ e 5 3 6 (A9)
4776(“ gt 2t 9~ 3
40’ (r'=-R)°® 4r'(r'-R“ 45r'-R)® 6(r'-R)
0,12 0_6 0.12 0.6
+ — - + y r, >R+ rmin.
L 40'(r"+R® 4r'(r'+R? 451 +R)° 6(r' + R)3> mn
The surface tension for a spherical fluid/fluid interface of radRus
(Ap)sz rr2
R)=- —vu(r',R)dr’. A10
y12R) 2 . RZU( ) ( )

Using Eq.(A9) one obtains the sharp-kink approximation for the surface tension:

011602-13



M. C. STEWART AND R. EVANS PHYSICAL REVIEW E71, 011602(2005

> 4 (9 1Ry, 5 1 and the gas/liquid interfaces. For long-ranged interparticle
Y12(R) = (Ap)“mer i, 16 12 (RIf i) _7_2(R/r 2 forces the dominant contribution is from the tails of the
m m fluid-fluid potentials, which decay as inverse powers of dis-
1 1 ) (AL1) tance. In the sharp-kink approximation the extra free energy
110 592R/r )8 per unit area for the planar interface is
4 In2R/Ir i 10 1 o(l;%0) == pg(p — pg)f v(Z')dZ (A13)
:712(00)(1_2_7 2 " o1 2 |
(R/rmin) 81(R/rmin)
1 1 where the wall density,, has been set to zero for simplicity.
- ——8) (A12) Integration gives the binding potential of Eg5). The
62 208(R/T i) equivalent expression for a spherical interface is

for R>r i, (cf. [12,20Q). The same formula is valid for the ® 2 |
tension between a spherical solid wall and a fluid of density (l;R) = - p4(p = pg)J Ev(r’,R)dr’ =w(l;®)| 1 +§
p1 provided y; () is replaced byy,(«), Eq. (A8). I+R

|2
+O<—2 In(I/2R))]. (A14)
The interaction between the interfaces R

If the thicknessl of the drying film is not infinite(see  The leading-order correction to the planar result is consistent
Figs. 1 and 2 then there will be an additional term in the with the scaling form given by Eqg2.39 and (2.40 of
grand potential due to the interaction between the wall/gafef. [12].
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