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We examine the interfacial properties of a hard spherical cavity, radiusR, immersed in a solvent in which the
fluid-fluid interaction potential contains both a hard-sphere repulsive part and an attractive −r−6 component.
Near to liquid-gas coexistence where the chemical potential deviationdm;m−mcosTd→0+ complete wetting
by the gas(drying) occurs and a coarse-grained effective Hamiltonian approach shows that the wall/liquid
surface tension has a term inR−2/3, i.e., a leading-order power-law nonanalyticity in the curvaturesR−1d in the
large cavity limit. For states sufficiently well removed from coexistence the surface tension can be expanded in
integer powers of the curvatureR−1, providedR.Rc with the length scale given byRc=2ggls`d / sDrdmd,
whereggls`d is the planar liquid/gas surface tension andDr is the difference between the coexisting densities.
However, even in these circumstances there are additionalR−2 ln R contributions to the surface tension arising
from the dispersion forces. An exact statistical mechanical sum rule is used to relate the density of the fluid at
the point of contact with the cavity,rsR+,md, to the pressure of the reservoir and the surface tension. This
predicts thatrsR+,md acquires a term inR−5/3 in the regimeR,Rc. Numerical results obtained by applying
classical density functional theory to this model confirm all the predictions from the coarse-grained approach
for both the surface tension and the contact density. We argue that our results for leading-order nonanalytic
contributions are exact, i.e., they should remain valid in the presence of interface fluctuations, and we discuss
briefly the repercussions for solvation phenomena and for other wetting situations.
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I. INTRODUCTION

Although the phenomenology of adsorption of simple flu-
ids at planar substrates is, arguably, well understood, for
curved substrates our understanding is relatively poorly de-
veloped. Much pioneering work on the relevant thermody-
namics was carried out by Gibbs[1] and summaries of exact
statistical mechanical results can be found in reviews by
Henderson[2,3]. Understanding the role of curvature has
taken on some new impetus because of recent advances in
microfabrication techniques; these can be used to create geo-
metrical or chemical structures, with various shapes and
length scales, on solid substrates. How fluids behave in con-
tact with such surfaces is important in microfluidics and is
relevant for certain chemical and biological applications. In
order to exploit fully the potential uses of structured sub-
strates it is necessary to have a detailed understanding of a
fluid’s adsorption behavior and, in particular, its wetting
properties[4]. Here we address a very basic question: How
does the nature of adsorption change when a substrate that is
planar acquires a nonzero curvature? We consider a particu-
larly simple geometry, namely, that where the substrate is a
hard spherical wall(or cavity) of radiusR immersed in the
fluid (solvent). Several recent studies[5] have focused on the
case where the solvent is the hard-sphere fluid so there is no
fluid-fluid phase separation and thus no complications of
wetting or drying at the hard-wall–fluid interface. In these
circumstances there are compelling arguments based on sum
rules [6,7] and good numerical evidence from density func-
tional theory(DFT) calculations[5,8] to support the conjec-

ture that thermodynamic quantities such as the Gibbs adsorp-
tion and the surface excess free energy, as well as the fluid
density in contact with the hard wall, can be expanded in
integer powers of the curvatureR−1. If the solvent exhibits
gas-liquid phase separation the situation becomes more com-
plex and for largeR and thermodynamic states sufficiently
close to bulk coexistence, drying at the hard-wall–liquid in-
terface leads to a regime where the surface thermodynamic
quantities and the fluid contact density do not exhibit a
power-series expansion inR−1, rather recent studies predict
striking nonanalytic behavior with terms depending on lnR
[6,9]. However, these studies relate to a specific class of
model where the fluid-fluid interaction potential is short
ranged. This class includes potentials of finite support such
as the truncated Lennard-Jones potential(as used in simula-
tions) and the square-well model, but also includes exponen-
tially decaying potentials. Since in real fluids dispersion
forces are always present, it is important to enquire how
results found for the class of short-ranged models are modi-
fied by the presence of long-ranged(power-law) interparticle
potentials. It is well known from the phenomenology of
complete wetting at planar substrates[10,11] that incorporat-
ing power-law forces leads to a very different type of
nonanalyticity in surface thermodynamic functions. For ex-
ample, in the complete wetting regime the Gibbs adsorption
per unit area diverges as −lndm for short-ranged forces but
as dm−1/3 for dispersion forces in three dimensions, in the
limit where the chemical potential deviation from bulk coex-
istencedm;m−mcosTd vanishes.

The specific model fluid we consider here has a pair po-
tential consisting of a hard core of diameters plus an attrac-
tive tail, taken to be the attractive part of the full Lennard-
Jones 12-6 potential—see Eq.(21) below. In the limit of a*Electronic address: Maria.Thomas@bristol.ac.uk
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planar substrate,R=`, such a fluid exhibits complete drying
at the hard wall for all temperaturesT for which there is bulk
gas-liquid coexistence, i.e., a film of gas intrudes between
the reservoir of the bulk liquid and the wall whose equilib-
rium thickness diverges, i.e.,leq,dm−1/3 asdm→0+, for all
T,Tc, the critical temperature. For a finite but large radius
R@s, we still expect to find a thick drying film but now its
thickness will be limited by the curvature so that in the limit
dm=0+ leq remains finite. In the present case of dispersion
forces, with the attractive fluid-fluid potential decaying as
−r−6, we find thatleq,R1/3, for dm=0+, in agreement with
earlier results based on an effective interfacial Hamiltonian
approach[12–14]. By contrast, the corresponding result for
short-ranged forces hasleq, ln R [6,9,15]. Unlike previous
studies of wetting on spheres and cylinders[12–17], where
the main purpose was to investigate how nonzero curvature
limits the equilibrium film thickness and modifies any wet-
ting transitions that might occur at the planar substrate, we
focus on the repercussions curvature has for the surface ten-
sion, i.e., the surface excess grand potential per unit area of
the substrate, and on the behavior of the fluid density profile
near the substrate. We find, in keeping with Ref.[6], that it is
important to identify two separate regimes of interfacial be-
havior. ForR.Rc, the surface tension and the density profile
at the wall can be expanded in integer powers ofR−1 whereas
for R,Rc these quantities acquire nonanalytic contributions,
for example, the surface tension has a leading-orderR−2/3

correction to the planar value. The length scaleRc
;2ggls`d /dmsrl −rgd, whereggls`d is the planar gas-liquid
surface tension andsrl −rgd is the difference in coexisting
densities, is the same as that which determines capillary con-
densation between two planar wetting walls or capillary
evaporation between two planar hard walls[18].

Our paper is arranged as follows. In Sec. II we describe
an effective interfacial Hamiltonian approach, based on a
sharp-kink approximation for the fluid density profile around
the hard-spherical cavity. By minimizing the excess grand
potential as a function of the thickness of the drying film we
determine the equilibrium thicknessleqsR,md and the result-
ing wall-liquid surface tension. An exact statistical mechani-
cal sum rule[2,3] is then used to obtain the fluid density
rsR+,md at the point of contactr =R+ with the wall. The
behavior of the surface tension and contact density in both
regimes is identified. Section III describes a nonlocal DFT
for our model fluid. The functional that we employ uses the
Rosenfeld[19] fundamental measures theory to treat the
hard-core repulsive part of the pair potential while treating
the long-ranged attractive tailfattsrd in a simple mean-field
fashion: for a uniform fluid the pair direct correlation func-
tion resulting from our functional iscsrd=chssrd−bfattsrd,
whereb=skBTd−1 andchssrd is the hard-sphere direct corre-
lation function obtained from Percus-Yevick theory. The den-
sity profiles and thermodynamic functions which result from
minimizing this functional are known to satisfy both the
Gibbs adsorption theorem and the sum rule for the contact
density [9]. This consistency is crucially important when
seeking subtle effects, especially contributions to thermody-
namic quantities that are nonanalytic in some parameter. In
Sec. IV we present the results of our numerical DFT calcu-

lations, comparing with the predictions from the mesoscopic
treatment of Sec. II. We find that all these predictions are
borne out by the numerical results for both regimes, i.e., for
R.Rc and R,Rc, confirming the validity of the coarse-
grained effective Hamiltonian approach. Section V considers
the adsorption of the model fluidinside the hard spherical
cavity, i.e., the situation of negative curvature, where capil-
lary evaporation is relevant. We conclude in Sec. VI with a
discussion of our results and their possible significance for
other interfacial phenomena. The Appendix describes the
sharp-kink calculation of the surface tension for fluid-fluid
and wall-fluid interfaces and of the binding potential that
enters the effective interfacial Hamiltonian used in Sec. II.
The sharp-kink treatment predicts that for both fluid-fluid
and wall-fluid interfaces the surface tension contains a
leading-order correction to the planar result which is propor-
tional toR−2 ln R when dispersion forces are present[12,20].
The existence of this contribution was confirmed in our DFT
calculations for a hard-wall–gas interface where there are no
complications of drying. Note, however, that within DFT the
leading-order correction isOsR−1d. For the hard-wall–liquid
interface drying leads to stronger,R−2/3, leading-order cor-
rections to the surface tension.

Although our calculations pertain directly to the situation
of complete drying at a hard spherical wall, it should be
recognized[6,9] that our results concerning nonanalytic fea-
tures in surface thermodynamic functions and crossover from
analytic to nonanalytic behavior are equally relevant to sev-
eral other(less esoteric) physical problems. These include(i)
wetting films of liquid adsorbed from the gas close to satu-
ration on the surfaces of curved substrates, and(ii ) wetting of
spherical colloidal particles immersed in a phase separating
(binary) solvent. If the colloid preferentially adsorbs one
component of the mixture a wetting film of the phase rich in
that component can develop on the colloids and this leads
subsequently to a variety of interesting phenomena, includ-
ing attractive effective interactions, bridge formation, and
possible coagulation of the colloidal particles[12,21,22]. It is
also important to consider potential implications of our re-
sults for understanding the physics and chemistry of solva-
tion. Chandler and co-workers[23] have argued that a proper
understanding of hydrophobic effects, at varying length
scales, should incorporate drying phenomena. In particular
they point to the importance of the length scaleRc, which is
,1 mm for water at room temperature and pressure[6]. We
discuss briefly the repercussions of our work for determining
solvation free energies, i.e., the work required to insert a
hard-spherical cavity into a solvent, as a function of cavity
radius and solvent chemical potential, leaving a more de-
tailed treatment to a later paper.

II. THE EFFECTIVE INTERFACIAL POTENTIAL

We begin with a coarse-grained effective Hamiltonian ap-
proach as used in Ref.[9]; for general reviews see Refs.
[10,11]. In this, sharp-kink, approximation the density of the
fluid at a hard spherical wall(radiusR) is taken to be
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rsrd = 50, r , R,

rg
+, R, r , R+ l ,

r, r . R+ l ,
6 s1d

where r is the density of the liquid reservoir at chemical
potentialm and rg

+ is the density of the(metastable) gas at
the same value ofm. This is illustrated in Figs. 1 and 2; Fig.
1 shows the planar systemsR=`d. The excess(over bulk)
grand potential is then written as a function of the drying
film thicknessl,

Vex; V + pVacc= gwgsR,mdAwg + gglsR+ ldAgl + vsl ;RdAwg

+ sp − pg
+dVg s2d

where the accessible volumeVacc=Vtotal−4pR3/3, p is the

pressure of the liquid reservoir, andpg
+ is the pressure of the

(metastable) gas. For small values ofdm;m−mcosTd, the
deviation from bulk coexistence, the pressure difference

p − pg
+ = srl − rgddm s3d

whererl andrg are the bulk coexisting densities at tempera-
ture T. Vg=4pfsR+ ld3−R3g /3 is the volume of the gas dry-
ing film. The first two terms in Eq.(2) are surface contribu-
tions: gwgsR,md andgglsR+ ld are the surface tensions of the
wall/gas and gas/liquid interfaces andAwg and Agl are the
corresponding areas. The interaction between the two inter-
faces is given by the third term and the binding potential,
vsl ;Rd, is derived using the sharp-kink approximation in the
Appendix. For the particular case of drying at a hard-
spherical surface one finds[see Eq.(A14)]

vsl ;Rd = vsl ;`dF1 +
l

R
+ OX l2

R2 lnS l

2R
DCG s4d

with the planar limit of the binding potential given by

vsl ;`d =
b

l2
+ OS 1

l8
D s5d

where the coefficient of the familiarl−2 term is

b = rgsrl − rgdpes6/3. s6d

b is the energy parameter(or the Hamaker constant) appro-
priate for hard-wall drying in a fluid in which the attractive
part of the fluid-fluid pair potential is given by a Lennard-
Jones(LJ) form—see Eq.(21) below.e is the LJ well depth
ands is the diameter.

In the planar limitsR=`d minimization of Eq.(2), with
Eq. (5), yields complete drying forall temperaturesT,Tc,
the bulk critical temperature, since the parameterb is always
positive. That is, in the limitdm→0+, the equilibrium film
thicknessleq→` andVex/Awg→gwgs` ,mcod+glgs`d.

For the spherical case we assumeleq!R and expand in
powers ofl /R in Eq. (2):

Vex

Awg
= gwgsR,md + gglsRdS1 +

2l

R
D +

b

l2
+ srl − rgddml s7d

and we have ignored the difference betweengglsRd and
gglsR+ ld. Higher order terms are not displayed.

Minimizing Eq. (7) with respect tol gives the equilibrium
drying film thickness

leq= S 2b

srl − rgddm + 2ggls`d/RD
1/3

s8d

where, consistent with the leading-order analysis, the planar
value is used for the gas-liquid surface tensiongglsRd. In the
limit dm→0, Eq.(8) predicts that the drying film thickens as
R1/3 [12–14]. The nonzero Laplace pressure arising from the
curved gas-liquid interface prevents the film thickness from
diverging. The key observation from Eqs.(7) and (8) is that
within this coarse-grained effective Hamiltonian approach
the undersaturation pressuresrl −rgddm plays the same role
as the Laplace pressure 2ggls`d /R. More specifically, the
equilibrium thickness of the drying film at bulk coexistence

FIG. 1. Geometry for a hard-sphere fluid in contact with a pla-
nar wall, showing a fluid particle of diameters at the contact sur-
face for the density profilesh=0d. In the sharp-kink approximation
for drying there is a film of fluid with the gasdensityrg

+ between
h=0 andh= l. For h. l the density is that of the bulk liquidr.

FIG. 2. The equivalent system in spherical geometry showing a
fluid particle at the contact radius for the density profilesr =Rd. In
the sharp-kink approximation there is a film of fluid with the gas
densityrg

+ betweenr =R andr =R+ l. For r .R+ l the density is that
of the bulk liquidr.
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on the spherical substrate is equal to that for the same fluid at
a planar substrate when the reservoir is at a chemical poten-
tial deviationdm=2glg /Rsrl −rgd. This equivalence between
the two pressures has been recognized by several authors,
e.g., Refs.[12,15–17]. Less well recognized are the implica-
tions for the excess grand potential and its derivatives with
respect to thermodynamic fields[6,9] and it is these implica-
tions that we investigate here for the case of dispersion
forces, i.e., for a fluid-fluid pair potential decaying as −r6.

Substituting Eq.(8) into Eq. (7) gives the equilibrium
wall-liquid surface tension, shown to leading order:

gwlsR,md ; Veq
ex/4pR2 = gwgsR,md + gglsRd + 3

2s2bd1/3p̃2/3

s9d

where

p̃ ; srl − rgddm +
2ggls`d

R
. s10d

For a planar hard wallsR=`d the surface tension in the
sharp-kink approximation reduces to

gwls`,md = gwgs`,md + ggls`d + 3
2s2bd1/3fsrl − rgddmg2/3

s11d

which implies that the critical exponent characterizing the
free energy for complete drying isas

co=4/3 [10,11]. If one
attempts a microscopic treatment, beyond the sharp kink,
then a term linear indm should arise, in addition to possible
higher order nonanalytic terms.

The curvature dependence of the(nondrying) wall/gas
and gas/liquid surface tensions is the subject of much litera-
ture, e.g., [2,12,20,24–27]. In the Appendix we use the
sharp-kink approximation to calculate the surface tension for
both interfaces. For dispersion forces there are[12,20]
R−2 ln R corrections to the planar limiting values—see Eq.
(A12) but note that within the sharp-kink approximation
there is no term inR−1, i.e., the Tolman[24] length is iden-
tically zero. However, beyond the sharp-kink approximation
it is likely that the leading-order corrections are proportional
to R−1, so we assume

gwgsR,md = gwgs`,mdF1 −
2dT

wg

R
+ OS lnsRd

R2 DG , s12d

gglsRd = ggls`dF1 −
2dT

gl

R
+ OS lnsRd

R2 DG , s13d

wheredT
wg anddT

gl are the Tolman lengths for the wall/gas and
gas/liquid interfaces, respectively.[Explicit results for the
planar tensions derived from the sharp-kink approximation
are given in the Appendix—see Eqs.(A7) and(A8).] Setting
dm=0 in Eq. (9) and employing Eqs.(12) and (13) we find
that the wall/liquid surface tension for the hard-spherical
substrate with liquid at bulk coexistence reduces to

gwlsR,mco
+ d = gwgs`,mcod + ggls`d + 3Sggls`d2b

R2 D1/3

+ S
dT

R

+ OsR−4/3d, s14d

wheredT is some microscopic length andS has the dimen-
sions of surface tension. This term, inR−1, which arises from
contributions beyond the sharp kink, combines contributions
from the surface tensions of the wall/gas and gas/liquid in-
terfaces and from the binding potential. Note that the
leading-order curvature correction varies asR−2/3, implying
that the first derivative ofgwl with respect to the curvature
R−1 would diverge in the limitR−1→0.

This striking nonanalytic behavior of a thermodynamic
quantity is the analog for a power-law fluid-fluid potential of
the result found in Ref.[9] for drying with short-ranged po-
tentials. There the corresponding nonanalytic contribution to
the surface tension varies asR−1 lnsaRd, where the constanta
is not known. In the present case the parameterb is deter-
mined, once the pair potential is specified and the coexisting
densities are determined—see Eq.(6). Note that in Eq.(14)
we have not included the higher-orderR−2 ln R contributions.

We can use the results derived above to calculate the den-
sity of the fluid at the point of contactrsR+,md. There is an
exact statistical mechanical sum rule[2] relating the contact
density at a hard wall to the wall/fluid surface tensiongwf
and the bulk pressurep:

kBTrsR+,md = p +
2gwf

R
+ S ]gwf

]R
D

T,m
. s15d

Note that in the planar limit,R−1→0, the contact density
reduces to the well-known resultrs0+,md=p/kBT. If we set
dm=0+ we can employ Eq.(14) and we find for the contact
density of the liquid at coexistence

kBTrsR+,mco
+ d = p +

2gwgs`,mcod
R

+
2ggls`d

R
+ 4Sggls`d2b

R5 D1/3

+ OsR−2d. s16d

This result is interesting for two reasons:(i) it states that the
contact density depends on the surface tension of the gas/
liquid interface, which can be very far from the wallsleq

,R1/3d when R is very large and(ii ) the contact density
acquires a term~R−5/3 which is nonanalytic in the curvature
sR−1d. The corresponding term for a short-ranged potential
varies asR−2 lnsaRd [9].

Of course one need not proceed directly to the limitdm
=0. As pointed out in Ref.[12] and discussed in detail for
short-ranged forces in Ref.[6] one should distinguish be-
tween two regimes of interfacial behavior as defined by the
length scale

Rc ;
2ggls`d

srl − rgddm
. s17d

For the regimeR!Rc for which dm must be kept very small
(recall thatR@s for the coarse-grained approach to be ap-
plicable) we recover, at leading order, the results(14) and
(16); the leading-order corrections to these results are linear
in dm. On the other hand, forR@Rc, which corresponds to
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approaching the planar limit at nonzerodm, we expandp̃ in
powers ofRc/R in Eq. (9) and find

gwlsR,md = gwls`,md +
2ggls`d

R
S 2b

srl − rgddm
D1/3

+
SdT

R

+ OsR−2 ln Rd + OSRc

R
D2

s18d

where the planar surface tensiongwls` ,md is given by Eq.
(11). In this regime one has a power series in the curvature
R−1, as for the case of short-ranged potentials[6], but there
are additionalR−2 ln R terms arising from dispersion forces,
Eqs. (12) and (13), which we now include explicitly. Since
SdT should depend very weakly ondm, the coefficient of the
R−1 contribution in Eq.(18) should increase asdm−1/3 when
dm is reduced at fixed largeR, provided one remains in the
regimeRc,R; we cannot allowdm to vanish.

Similarly one can calculate the contact density in the
same regime,R@Rc, and obtain

kBTrsR+,md = p +
2gwls`,md

R
+ OsR−2d. s19d

Thus from the coefficient of theR−1 term in the contact den-
sity one can obtain the planar surface tension at nonzerodm.
This contains the nonanalyticdm2/3 term [see Eq.(11)] asso-
ciated with complete drying. The remaining contributions in
Eq. (19) constitute a power series in the curvatureR−1; cf.
[6]. Note that there is noR−3 ln R contribution.

The results presented above pertain to a coarse-grained
effective Hamiltonian description of the drying film. One
might expect that theform of the leading-order results is
maintained in a fully microscopic treatment in which the
surface tensions are not those obtained from the sharp-kink
approximation; rather they are those obtained from a proper
microscopic theory. In Refs.[6,9] this assertion was tested
for a square-well fluid. Here we examine the predictions of
the coarse-grained theory for a model fluid with a hard core
plus a power-law attractive potential using the same DFT as
used in Refs.[6,9]. In this case the predictions involve
power-law nonanalyticities rather than logarithms and, sig-
nificantly, we know the relevantamplitudes, since these de-
pend on the energy parameterb, whose value is determined.

III. DENSITY FUNCTIONAL THEORY

In density functional theory the free energy of an inhomo-
geneous fluid is expressed as a functional of the average
one-body densityrsr d. DFT methods are widely used to in-
vestigate equilibrium structure and thermodynamic functions
such as surface tensions. For a review of DFT see Ref.[28].
The free-energy functional is not known exactly. In the ap-
proximation that we employ the attractive part of the intrin-
sic Helmholtz free energy functional is treated as a type of
perturbation about a hard-sphere reference fluid:

Ffrg = Fidfrg + Fhsfrg +
1

2
E dr 1E dr 2rsr 1drsr 2dfattsr12d

s20d

wherer12= ur 1−r 2u. The ideal gas term is simply

bFidfrg =E dr rsr dfln L3rsr d − 1g

where b=1/skBTd and L is the thermal de Broglie wave-
length.

Our model fluid has a hard-sphere repulsive core and for
the attractive interaction potential between fluid particles we
use the attractive part of the Lennard-Jones potential:

fattsrd = 54eFSs

r
D12

− Ss

r
D6G , r . rmin,

− e, r , rmin,
6 s21d

wherermin=21/6s.
The hard-sphere part of the excess free-energy functional

Fhsfrg is treated by means of Rosenfeld’s fundamental mea-
sures theory[19]. His functional for a single-component
hard-sphere fluid is

bFhsfrg =E dr Fsnad, s22d

where the reduced free-energy density is taken to be

Fsnad = − n0 lns1 − n3d +
n1n2 − n1 ·n2

1 − n3
+

n2
3 − 3n2n2 ·n2

24ps1 − n3d2 .

The weighted densitiesna are calculated from

nasr 1d =E dr 2rsr 2dwasr 1 − r 2d, s23d

where the four scalar weight functions for hard spheres of
diameters are

w3sr d = Qss/2 − rd, w2sr d = dss/2 − rd,

w1sr d =
w2sr d
2ps

, w0sr d =
w2sr d
ps2

and the two vector weight functions are given by

w2sr d =
r

r
dss/2 − rd, w1sr d =

w2sr d
2ps

.

For the homogeneous hard-sphere fluid the free-energy den-
sity reduces to the Percus-Yevick compressibility result and
the pair direct correlation function obtained by taking two
functional derivatives ofFhsfrg is identical to that from
Percus-Yevick theory[19]. This weighted-density approxi-
mation incorporates short-range correlations so that oscilla-
tory density profiles can result. Moreover it also describes
correctly the density at the hard wall so that the sum rule
[Eq. (15)] and the Gibbs adsorption theorem are satisfied.
This was confirmed earlier in numerical studies for hard
spheres adsorbed at hard curved cavities[5] and checked
carefully in the present study for the functional(20). In our
calculations we take the hard-sphere diameters to be equal
to the diameter entering the Lennard-Jones potential(21).

The equilibrium density profile is found by minimizing
the grand potential functional:
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Vvfrg = Ffrg −E dr fm − Vsr dgrsr d s24d

wherem is the chemical potential andVsr d is the external
hard-wall potential,

Vsr d = H+ `, r ø R,

0 otherwise.
J s25d

Applying the variational principle with Eq.(20) gives the
Euler-Lagrange equation

m = Vsr 1d + mid„rsr 1d… +
dFhsfrg
drsr 1d

+E dr 2rsr 2dfattsr 1 − r 2d

s26d

wheremid is the ideal gas chemical potential. The third term
in Eq. (26) is evaluated by substituting Eq.(23) into Eq.(22)
and taking the derivative to obtain

b
dFhsfrg
drsr 1d

=E dr 2o
a

]F

]na

wasr 1 − r 2d. s27d

Note that the final term in Eq.(26), which constitutes a
simple mean-field-like contribution to the intrinsic chemical
potential, is long ranged for power-law potentials such as
Lennard-Jones. Equation(26) was solved numerically to find
the equilibrium density profile. From this the corresponding
equilibrium excess grand potentialVeq

ex was calculated. Note
that in our calculations the dividing surface is located atr
=R+, the radius where the density profile first becomes non-
zero. The physical radius of the hard wall isR−s /2—see
Figs. 1 and 2. The liquid-gas coexistence curve is determined
from the bulk free energy obtained by settingrsr d to be
constant in Eq.(20). The critical temperature is given by
kBTc/e=1.415 39.

IV. NUMERICAL RESULTS

A. Wall/gas surface tension

Initially the curvature dependence of the wall/gas surface
tension was investigated. For this situation no drying film is
present. DFT results for a hard-sphere fluid at a hard-
spherical wall[5,8] suggest that the leading-order correction
to the planar surface tension is linear in the curvature. They
show no evidence for the existence of logarithmic terms.
Rather the surface tension and the contact density are accu-
rately represented by power-series expansions inR−1. When
long-ranged dispersion forces between the fluid molecules
are introduced then a nonanalyticR−2 ln R term is predicted
by the sharp-kink approximation—see Eq.(12).

In Fig. 3 we display the results for the surface tension as
a function of curvature for a state at bulk coexistence,m
=mco

− sTd, with T=0.7Tc for which the coexisting densities are
rgs3=0.018 026 andrls

3=0.667 379. A least squares fit to
the data gives a positive coefficient for theR−1 term which
corresponds to a small negative Tolman length. This term has
contributions from both the short-ranged repulsive hard-
sphere potential and from the attractive Lennard-Jones po-

tential. The sharp-kink approximation for the surface tension
does not have anR−1 term but if a more realistic profile is
assumed then such contributions do arise from the dispersion
forces.

The coefficient of theR−2 ln R term extracted from the fit
can be compared with the value predicted by the sharp-kink
approximation[Eq. (A11)]. The agreement is about 1 part in
100. Numerical results at other state points show similar con-
sistency. This is convincing numerical evidence for the pres-
ence of theR−2 ln R nonanalytic contribution to the surface
tension. The close agreement between the numerical(DFT)
and sharp-kink values for this coefficient is perhaps surpris-
ing since the DFT density profiles are not sharp-kink-like, as
the nonzero Tolman length clearly illustrates. However, it is
unlikely that deviations from the sharp-kink behavior in the
density profiles(which give rise to theR−1 term and alter the
coefficient of R−2) could lead to any additionalR−2 ln R
terms in the surface tension. Indeed our analysis suggests
that the coefficient ofR−2 ln R depends only on the bulk
densities of the two phases so that the sharp-kink value
remains correct even when the microscopic profile is not
sharp-kink-like.

The sharp-kink approximation also yields a value for the
coefficient of theR−2 contribution. This is similar to the
value we obtain from fitting to our DFT data(see caption to
Fig. 3) but is not identical because of corrections from the
hard-sphere part of the potential and from the(non-sharp-
kink) shape of the profile.

B. Wall/liquid (drying) density profiles

Figure 4 shows density profiles for the liquid at bulk co-
existence,mco

+ sTd, at the same temperatureT=0.7Tc, in con-
tact with large hard spheres of various radii. ProvidedR is
sufficiently large these profiles are nearly identical to those at

FIG. 3. Surface tension of the gas at a hard-spherical wall
of radius R−s /2, at T=0.7Tc and m=mco

− , (P). The line is a fit
to the equation bs2gwgsRd=a0+a1s /R+a2 lnss /Rd2 lns2R/ rmind
+a2ss /Rd2. The resulting coefficients area0=7.3765310−4, which
is close to the independently determined planar surface tension
bs2gwgs`d=7.3763310−4, a1=7.7310−5 giving a negative Tol-
man lengthdT

wg/s=−a1/ s2a0d=−0.05, a2 ln=−1.70310−4 (sharp-
kink prediction=−1.72310−4), and a2=−1.7310−4 (sharp-kink
prediction=−1.4310−4).
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a planar hard wall withdm=2ggls`d / fRsrl −rgdg. This
equivalence of microscopic density profiles was also ob-
served for systems with short-ranged potentials[9]. It holds
down to quite a small radiussR<10sd, where there is no
thick drying film and where the relevant bulk densities are
clearly different. This is a surprising result, first because the
equivalence between bulk field(undersaturation pressure) for
a planar wall and curvature(Laplace pressure) predicted by
Eq. (8) might be expected to apply only to the film thickness
leq, not necessarily to the whole microscopic profile. Second,
one observes in Fig. 4 that the shapes of the profiles forR
,100s are far from the sharp-kink profile assumed in the
derivation of Eq.(8).

The inset demonstrates that forRù53105s, when there
is a very thick drying film present, the density close to the
wall approaches that of the bulk coexisting gas,m=mco

− sTd, at
a planar wall. Therefore we expect that the total wall/liquid
surface tension can indeed be written as the sum of the sepa-
rate wall/gas and gas/liquid tensions plus a term for the in-
teraction between the two interfaces. For smaller values ofR
one sees that the density near contact with the wall is greater
than that for the gas at coexistence but the equivalence be-
tween the profiles for the two wall/liquid interfaces remains
valid.

C. Adsorption at the wall/liquid interface

Within the effective Hamiltonian approach the drying film
thicknessl is the natural variable. The corresponding thermo-
dynamic quantity is the Gibbs adsorption

GsR,md = 4pE
R

`

r2frsrd − rgdr, s28d

wherer is the reservoir density. Within DFT the adsorption
was found by numerically integrating the density profile. It

can also be obtained from the relationG=−]Veq
exsR,md /]m.

An equilibrium film thickness can then be defined via

leq; −
GsRd

4pR2srl − rgd
. s29d

Figure 5 shows a log-log plot of adsorption per unit area
versus the (dimensionless) pressure bp̃s3;fsrl −rgddm
+2glgs`d /Rgbs3 [see Eq.(10)]. The data include adsorption
at a planar substrate for a liquid off coexistence and adsorp-
tion at spherical substrates on and off coexistence. The ad-
sorption predicted by substituting Eq.(8) into Eq. (29) is
shown as a straight line on the plot. In the region where the
magnitude of the adsorption and therefore the drying film
thickness is largesleq.12sd this line gives a good fit to the
numerical results. For thinner drying films the sharp-kink
approximation appears to break down, although the equiva-
lence between the pressures, 2glgs`d /R andsrl −rgddm holds
even when the sphere radius is small and there is no thick
drying film, i.e., the data for the planar and curved walls still
collapse onto a single curve.

D. Wall/liquid surface tension

In Fig. 6 we plot the difference between the wall/liquid
and wall/gas surface tensions(at mco

± ) for T=0.7Tc versus
s /R for very large values ofR/s. According to Eq.(14) we
expect the leading-order correction to the planar gas-liquid
tension to be 3fggls`d2bg1/3 R−2/3. A least squares fit to the
numerical DFT data permits a comparison with the predicted
coefficient of theR−2/3 term. The latter was calculated using
the theoretical(sharp-kink) value forb [Eq. (6)] which gives
bb=0.012 372 for this temperature and the numerical result
for the planar liquid/gas surface tension:bs2ggls` ,md
=0.545 196. The agreement is better than 0.2%.

FIG. 4. Density profiles of the liquid adsorbed at hard walls for
T=0.7Tc. The broken curves refer to the liquid at bulk coexistence,
mco

+ sTd, at spherical walls of various radiiR−s /2. The symbols
refer to the liquid near a planar wall at chemical potential deviation
dm;m−mcosTd=2ggls`d / fRsrl −rgdg. For each radius, except the
two smallest ones, the two profiles are indistinguishable. The solid
line refers to the gas atmco

− sTd at a planar wall. The inset shows the
region very close to the wall.

FIG. 5. Log-log plot of adsorption per unit area versusbp̃s3

;fsrl −rgddm+2glgs`d /Rgbs3 at T=0.7Tc. The DFT data corre-
spond to a liquid adsorbed at spherical walls of different radii,R
−s /2, both at coexistence(P) and off coexistence at variousdm
;m−mcosTd (s). There are also data for a liquid off coexistence,
adsorbed at a planar hard wall(1). The straight line with slope
−1/3 is the prediction of Eq.(8).
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In order to test the validity of the expansion of the surface
tension in powers ofR−1 for R.Rc [Eq. (18)], the surface
tension is plotted as a function of curvature at two different
fixed chemical potentials near coexistence. The results, for
large radius, are shown in Figs. 7 and 8. The intercepts of the
linear fits give excellent agreement with the independently
calculated, within DFT, planar surface tensionsgs` ,md at
the respective chemical potentials; typically better than 1
part in 53104. The fits also confirm that in the limitR→`
and fordmÞ0 the leading-order correction to the planar sur-
face tension is linear in the curvature; see Eq.(18). This
contrasts with the situation whendm=0, i.e., Rc=`, where
the surface tension has a nonanalyticR−2/3 term (Fig. 6).

The difference between the surface tension at a spherical
and at a planar substrate is plotted versussbdmd−1/3 for two
different substrate radii in Figs. 9 and 10. The gradients of
the linear fits are close to those predicted by Eq.(18). At

larger values ofdm−1/3 the higher-orderR−2dm−4/3 term be-
comes significant, causing the results to deviate from a
straight line.

E. Contact density at the wall

In Fig. 11 we plot the difference between the contact den-
sities at the wall for the coexisting liquid,rliqsR+d
;rsR+,mco

+ d, and gas,rgassR+d;rsR+,mco
− d, phases versus

curvature atT=0.7Tc. By subtracting the wall/gas contact
density we eliminate the first two terms in Eq.(16) so that
the leading-order term in the difference of contact densities
is 2bs3ggls`d /R. By performing a least squares fit forR/s
.106 (see Fig. 11) we extract the gradient and compare with
the independently calculated planar gas/liquid tension. The
agreement is better than 1 part in 104. This confirms that the
contact density at the wall/liquid interfacersR+,mco

+ d does

FIG. 6. The difference between the surface tensions in the liq-
uid, at mco

+ sTd, and gas,mco
− sTd, phases, adsorbed at hard-spherical

walls of radiusR−s /2, versus curvature forT=0.7Tc (P). The line
shows a fit to the DFT data assumingR−2/3 dependence(see text).

FIG. 7. The surface tension for liquids off coexistence,bdm
=4.78310−7 ss /Rc=2.85310−7d, adsorbed at hard-spherical walls
of radiusR−s /2, versus curvature forT=0.7Tc (s). The straight
line shows a linear fit to the DFT data[see Eq.(18)].

FIG. 8. As for Fig. 7 but withbdm=1.53310−5 ss /Rc=9.11
310−6d.

FIG. 9. The difference in surface tension between a spherical
and a planar substrate versussbdmd−1/3, for the liquid adsorbed at a
hard wall of radiusR−s /2 with R=83106s, for T=0.7Tc (s). The
straight line shows a fit to the DFT data in the linear region and has
gradient 4.47310−8 (compared to a predicted gradient of 4.59
310−8); see Eq.(18).
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acquire a contribution proportional to the Laplace pressure of
the gas/liquid interface located far from the wall, i.e., near
R+ leq, asR−1→0. A plot equivalent to Fig. 11 was presented
in Fig. 2 of Ref.[9] for the case of a square-well fluid ad-
sorbed at a hard-spherical wall. In the latter case there was
good numerical evidence for the presence of the next to lead-
ing orderR−2 lnsaRd term appropriate to short-range forces.
However it was difficult to extract accurately the coefficient
of this term. For the case of dispersion forces described here
we are able to fit the difference in contact densities very
accurately by including theR−5/3 next to leading order
term—see Eq.(16). The coefficient we obtain from the nu-
merical fit agrees with the predicted value of 4bfggls`d2bg1/3

to better than 0.5%.
Off coexistence the contact density at spherical substrates

with large radii, chosen so thatR@Rc, is expected to be
linear in the curvature[Eq. (19)]. The predicted gradient is
2bgwls` ,md, where the planar wall/liquid surface tension at
chemical potentialm can again be found independently. Fig-
ures 12 and 13 show graphs of contact density against cur-
vature for two different, fixed chemical potentials. Once

again the agreement between the gradients of the linear fits
and those predicted by the theory is very good, to 1 part in
104. As emphasized in Ref.[6], it is important to confirm the
validity of Eq. (19) since this is the route employed by Still-
inger and Cotter[7] in their derivation of an exact formula
for the planar hard-wall fluid surface tension. Note that for
small values ofbdm very large radiiR are required to enter
the regime of validity of Eq.(19).

V. FLUID INSIDE A HARD SPHERICAL CAVITY

In this section we consider what happens when the curva-
ture is negative,R−1,0. The fluid is now adsorbed on the
inside surface of the hard-spherical cavity as shown in
Fig. 14. We can remain in the grand-canonical ensemble by
allowing solvent particles to be “ghosted” into the sphere
from a reservoir at fixedsm ,Td. Once again we takedm.0
so that the reservoir is a liquid state. Following the coarse-
grained Hamiltonian approach outlined in Sec. II we obtain
the excess grand potential per unit area:

FIG. 10. As for Fig. 9 but withR=1.63107s. The linear fit to
the DFT data has gradient 2.24310−8 (compared to a predicted
gradient of 2.29310−8).

FIG. 11. The difference between contact densities in the liquid,
mco

+ sTd, and gas,mco
− sTd, phases adsorbed at hard-spherical walls of

radii R−s /2, versus curvature forT=0.7Tc (full line). A fit to the
linear portion near the origin(see inset for data at largeR) is shown
as a dotted line. The gradient is 1.0904, which is close to
2bs2ggls`d=1.090 39 predicted by Eq.(16).

FIG. 12. The contact density for liquids off coexistence,bdm
=4.78310−7 ss /Rc=2.85310−7d, adsorbed at hard spherical walls,
as a function of the curvature. The gradient of the straight line fit is
1.09193 compared to a predicted gradient of 1.09191 -see Eq.(19).
bp is the contact density at a planar wall,R=`, for a liquid at the
same chemical potential deviationdm.

FIG. 13. As for Fig. 12 but withbdm=1.53310−5 ss /Rc

=9.11310−6d. The gradient of the straight line fit is 1.092 33 com-
pared to a predicted gradient of 1.092 28.
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Vex

Awg
= gwgsR,md + gglsRdS1 −

2l

uRuD +
b

l2
+ srl − rgddml

s30d

and minimizing with respect tol gives the equilibrium drying
film thickness

leq= S 2b

srl − rgddm − 2ggls`d/uRuD
1/3

. s31d

The Laplace pressure from the curved liquid/gas interface
now acts toincreasethe thickness of the gas layer and the
equilibrium film thickness on the inside surface of the spheri-
cal hard wall isgreater than that at the planar wall for the
same value ofdm; cf. Eq. (8).

For fixed, nonzerodm the equilibrium film thickness is
continuous throughR−1=0 and provideduRu@Rc the wall/
liquid surface tension has(apart from the ubiquitous
R−2 lnuRu term) a power-series expansion in the curvature
[see Eq.(18)]:

gwlsR,md = gwls`,md +
2ggls`d

R
S 2b

srl − rgddm
D1/3

+
SdT

R

+ OsR−2 lnuRud + OSRc

R
D2

. s32d

As we decrease the size of the cavity further(i.e., the curva-
ture R−1 becomes more negative) the film thicknessleq in-
creases and as we approachR=−Rc the denominator in Eq.
(31) vanishes, implying that the film thickness diverges.
However, in finding the global minimum in the excess grand
potential we must also consider the state in which the cavity
is filled with the metastable gas phase, i.e., capillary evapo-
ration [18] (see Fig. 15). The excess grand potential for this
configuration is

Vg
ex

Awg
;

V + pVacc

Awg
=

1

3
srl − rgddmuRu. s33d

The equilibrium state is the state with the minimum excess
grand potential per unit area. Therefore capillary evaporation
occurs ifVex=Vg

ex. Combining Eqs.(30), (31), and(33), we
find that

srl − rgddm =
3ggls`d

sRevap − 3leq/2d
s34d

or

Revap −
3leq

2
=

3Rc

2
s35d

for Revap, the radiusuRu, for which capillary evaporation oc-
curs at fixeddm. leq is given by Eq.(31). [The equivalent
result for a system with short-ranged interparticle forces is
srl −rgddm=3ggls`d / sRevap− leqd, where we have assumed
leq@bulk correlation length of the gas phase.] Thus evapo-
ration occurs before we reach the nonanalytic regimeR=
−Rc, i.e., Revap.Rc. As we decrease the radius of the cavity
throughuRu=Revap there is a discontinuous(first-order) phase
transition from a state in which the cavity contains liquid
with a finite film of gas next to the surface to a state where
the hard-spherical cavity is completely filled with the gas
phase. However, on decreasingdm, Rc increases so that the
validity of Eq. (32) is restricted to large values ofuRu and
Revap is larger. In the limitdm→0+, bulk coexistence, there is
complete drying at the planar wall and introducinginfinitesi-
mal negative curvature results in the hard cavity being filled
with the gas phase, i.e., capillary evaporation occurs
immediately.

We should emphasize that the treatment of evaporation
presented above is mean field in character. For a finite inte-
rior radiusuRu there is, of course, no true phase transition as
a finite volume of fluid is involved. Nevertheless, for a large
radius@s we expect the first-order evaporation transition to
be only weakly rounded, in saydm, so that the adsorptionG
(order parameter) would not exhibit a discontinuous jump;

FIG. 14. The fluid inside a hard-spherical cavity, i.e., curvature
R−1,0, showing a fluid particle of diameters at the contact surface
for the density profile. In the sharp-kink approximation there is a
drying film with the gas densityrg

+ betweenr = uRu and r = uRu− l,
and the density in the central regionr , uRu− l is that of the bulk
liquid r.

FIG. 15. Capillary evaporation in a hard-spherical cavity: In the
sharp-kink approximation the cavity is filled with fluid with the gas
densityrg

+.
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rather, it would show an extremely rapid change in slope.
Such a consideration does not affect the overall validity of
the arguments regarding crossover from nonanalytic to ana-
lytic behavior and the onset of evaporation.

VI. CONCLUSIONS

In this paper we have investigated the effects of curvature
on the adsorption properties of a simple fluid, described by
the fluid-fluid pair potential of Eq.(21), near a hard-spherical
wall. We find that the results of a microscopic DFT approach
(see Sec. IV) are completely consistent with those predicted
by a coarse-grained effective interfacial Hamiltonian in Sec.
II. The main conclusions are as follows.

(1) We confirm(see Fig. 3) the sharp-kink prediction that
there is anR−2 ln R term in the surface tension of a fluid with
an attractive −r−6 tail in the pair potential by considering the
gas atm=mco

− adsorbed at a hard-spherical wall. However,
the leading-order correction to the planar surface tension is
proportional toR−1.

(2) Our DFT results for the Gibbs adsorptionG (see Fig.
5) confirm that the thickness of the drying film diverges as
R1/3, as R→`, for our model fluid at bulk coexistencedm
=0+, in agreement with earlier predictions[12–14]. More-
over, the excellent data collapse in DFT results forG dem-
onstrates that the isomorphism between the undersaturation
pressuresrl −rgddm at a planar substrate and the Laplace
pressure 2ggls`d /R remains valid down to rather small radii
R, where thick drying films are no longer present. This sug-
gests that as regards the adsorption(and therefore the bind-
ing potential) the isomorphism may be valid beyond leading
order. Note that the total surface tension for these two sys-
tems is not expected to be the same beyond leading order
because of theR−1 terms in the individual wall/gas and gas/
liquid surface tensions which arise if the density profile is
not sharp-kink-like.

(3) We have shown(see Fig. 6) that the wall/liquid sur-
face tension fordm=0+ has a leading-orderR−2/3 correction
to the planar result. In addition we have confirmed that the
coefficient of this contribution[see Eq.(14)] calculated from
DFT is the same as that predicted by the coarse-grained
Hamiltonian, with the parameterb given by the sharp-kink
approximation, i.e., Eq.(6).

(4) DFT results(see Fig. 11) confirm the validity of the
predictions of Eq.(16) for the contact densityrsR+,md at
dm=0+, namely, kBTrsR+,mco

+ d has a contribution propor-
tional to the Laplace pressure 2ggls`d /R plus a term inR−5/3.
The DFT results for the coefficients of both theR−1 andR−5/3

terms are in excellent agreement with those predicted by the
effective interfacial Hamiltonian.

(5) In the analytic regimeR.Rc, which requiresdm.0,
the theory of Sec. II predicts that the surface tension and the
contact density should possess a power series expansion in
the curvatureR−1. Our DFT results(see Figs. 7–10, 12, and
13) confirm this prediction. In particular, the coefficient of
R−1 in the expansion ofkBTrsR+,md yields the planar surface
tensiongwls` ,md—see Eq.(19)—as is required in the classic
analysis of Ref.[7].

(6) We find that the isomorphism between a system at a
planar substrate off coexistence by an amountdm and one at
a spherical substrate atdm=0+ whose radius is given by
2ggls`d /R=srl −rgddm applies to thewhole density profile,
provided the hard cavity radiusRù100s. There is no obvi-
ous reason why this isomorphism should remain valid down
to such small radii. We know that in the limit of largeR the
drying film thickness and therefore the adsorptionG should
be equivalent. We also know that the contact densities should
be equivalent since these can be viewed as thermodynamic
quantities determined by the surface tension—see Eq.(15).
But there is no compelling reason to expect that the profiles
themselves would be very close for such a wide range ofR.

Our DFT results refer to a single temperatureT=0.7Tc.
We have carried out a few calculations for another tempera-
tureT=0.6Tc. The results are in equally good agreement with
the predictions of Sec. II.

Both theoretical approaches employed here omit effects of
capillary-wave fluctuations in the gas-liquid interface that
develop nearr =R+ leq. For complete wetting/drying at a pla-
nar interface when dispersion forces(power-law interaction
potentials) are present, fluctuations are not expected to alter
the results of the corresponding mean-field treatment[29].
This follows since the upper critical dimensiondc for the
complete wetting phase transition isdc=s2+3nd / s2+nd
wheren is the exponent describing the decay of the binding
potentialwsl ;`d, l−n; recall thatn=2 for dispersion forces
in d=3 [see Eq.(5)]. Thus for any finiten, dc,3 [10,11,29],
and fluctuations should not affect the results of a mean-field
analysis of complete drying at a planar surface. Since, to
leading order inl /R, incorporating curvature simply replaces
srl −rgddm at a planar wall by the sumsrl −rgddm
+2ggls`d /R we conjecture that our mean-field results for
nonanalytic contributions to interfacial properties should be
unaltered by incorporating capillary wave fluctuations, i.e.,
our predicted power laws and amplitudes should beexact
[30].

Of course the same conclusion holds for a model fluid
with nÞ2, i.e., one for which the fluid-fluid pair potential
decays as −r−sn+4d. Often it is useful to consider these more
general models in the statistical mechanics of wetting[29].
For such a modelleq,R1/sn+1d for dm=0+, gwlsR,mco

+ d ac-
quires a term in R−n/sn+1d, and rsR+,mco

+ d a term in
R−s2n+1d/sn+1d.

When comparing our results with those derived for short-
ranged potentials[6,9] there are two key differences:(i) dry-
ing in a fluid where dispersion forces are present leads to
stronger (power-law) nonanalytic contributions than the
logarithmic contributions which characterize drying with
short-ranged forces and(ii ) the −r−6 decay of the interpar-
ticle potential results in wall/gas and gas/liquid interfacial
tensions that include a term inR−2 ln R associated with the
density difference between the relevant bulk phases. Note
that we have not attempted to confirm the predictedR−2 ln R
term in the gas/liquid tension using DFT.

We conclude by turning to the physical relevance of our
results. There are several applications in fluid interfacial phe-
nomena where it would be advantageous to be able to ex-
press the interfacial free energy as an expansion in powers of
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the relevant curvature(s). A well-known example is Hel-
frich’s analysis of fluctuating membranes[31]. Recently
König et al. [8] have provided arguments as to why it should
be possible to expand the wall/fluid surface tensiongwfsR,md
and other surface thermodynamic quantities as a constant
plus a contribution linear in the mean curvature and one
linear in the Gaussian curvature of the convex surface
bounding the fluid. If one can make such an expansion this
would be most useful in colloid science for theories of deple-
tion forces for hard particles of various shapes[5,8]. Our
present work, as well as that in Ref.[6], shows that for a
fluid undergoing gas-liquid coexistence it is not,in general,
possible to make such power-series expansions. These must
fail near the bulk critical point where the correlation length
becomes comparable with the radiusR and here we have
demonstrated that the series expansion breaks down, because
of drying, in the regimes!R,Rc. For the regimeR.Rc a
power-series expansion in the curvature(s) should exist for
short-ranged fluid-fluid potentials[6] but, as we have seen
here, dispersion forces give rise to additionalR−2 ln R con-
tributions to the surface tensions—see also Ref.[12]. Clearly
the value ofRc is important. As emphasized earlier,Rc for
water at room temperature and pressure is surprisingly
large—about 1mm. This follows becausebdm, or equiva-
lently bs3fp−pcosTdg, is so small. The same remark should
hold for many other liquids at atmospheric pressure. The
implication is that for many liquids one is usually in the
nonanalytic regimeR,Rc, where the power-series expan-
sions are not applicable.

This observation has repercussions for the solvation of big
solvophobic solute particles. Recall from the definition in
Eq. (2) that the work required to create an empty cavity of
radiusR (equivalent to the excess chemical potential for in-
serting a single hard sphere) in the fluid at fixedsm ,Td is

mhs
exsR,md = p4

3pR3 + 4pR2gwfsR,md s36d

where psm ,Td is the pressure of the reservoir. For a liquid
such as water under ambient conditions, wherebs3p is very
small, the second, interfacial, term in Eq.(36) plays a very
important role and several authors[23,32] have emphasized
that gwlsR,md will, because of drying, contain a(large) gas-
liquid surface tension contribution for large solute radii. Here
we have shown that the work of cavity insertion per unit area
contains a positive nonanalytic leading-order correction term
proportional toR−2/3 in addition to the termggls`d—see Eq.
(14), providedR,Rc. We shall discuss the implications of
this result for the solvation of a hard sphere in a later publi-
cation.

In real systems it is very difficult to create situations
where the wall-fluid potential is perfectly hard, although re-
fractive index matching might bring about a good approxi-
mation in colloidal fluids. In practice there are often(weak)
residual attractive interactions between the big particle and
the fluid. Provided the wall-fluid interparticle potential de-
cays no more slowly thanr−6 and complete drying still oc-
cursgwlsR,mco

+ d will acquire aR−2/3 contribution. However, if
these residual interactions are sufficiently attractive then one
does not have complete drying. Rather one has solvophobic

(hydrophobic) substrates that correspond in the planar limit
to partial drying, i.e., the contact angleu,180° rather than
u=180°, corresponding to complete drying. In this case a
thick (diverging) drying film of gas does not develop at the
planar wall/liquid interface but there can still be a region of
depleted fluid density with an accompanying(large) wall/
liquid surface tension. Solvation under such circumstances
is, of course, of much relevance in physical chemistry as is
the transition from complete to partial drying. If the latter is
continuous(critical drying) new nonanalytic contributions
arise near the transition for the surface tension and for other
interfacial quantities; when dispersion forces are present
these are power-law contributions, different from those asso-
ciated with complete wetting[33].

As remarked in Sec. I and in Ref.[6] our theory is also
relevant to the case of wetting of a curved substrate by a
liquid film, m→mco

− sTd, or of a colloidal particle near phase
separation in a binary solvent. In both cases we expect to
find equivalent regimes of interfacial behavior, defined by
length scales equivalent toRc.
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APPENDIX: THE SHARP-KINK APPROXIMATION
FOR THE SURFACE TENSION AND BINDING POTENTIAL

The sharp-kink approximation assumes that the fluid den-
sity is constant on each side of the interface, with a discon-
tinuous jump at the interface. The surface tension is calcu-
lated by comparing the free energy of the system with that of
a semi-infinite amount of each of the two uniform fluid
phases[10]. A wall/fluid interface is treated in a very similar
way to a fluid/fluid interface. For a hard wall which does not
exert any attractive force on the fluid particles the wall den-
sity rw is simply set to zero in the following equations.

Planar interface

In order to construct the interface imagine breaking an
infinite amount of uniform fluid, number densityr1, in half.
The potential due to a semi-infinite slab of fluid distancez8
away is

r1vsz8d = r1E
z8

`

dzE
0

`

2prfattsÎr2 + z2ddr sA1d

wherefattsr12d is the attractive interaction potential between
fluid particles separated by distancer12. Carrying out the
integration for the attractive part of a Lennard-Jones poten-
tial, defined by Eq.(21), gives
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vsz8d =54peS s12

45z89 −
s6

6z83D , z8 . rmin,

4peF rmin
2 z8

4
−

z83

12
−

rmin
3

6
+

2s12

9rmin
9 −

2s6

3rmin
3 − S s12

5rmin
10 −

s6

2rmin
4 Dz8G , z8 , rmin.6 sA2d

The free-energy cost(per unit area of interface) for breaking
apart the fluid is

−
r1

2

2
E

0

`

vsz8ddz8 sA3d

and similarly for the second fluid of densityr2,

−
r2

2

2
E

0

`

vsz8ddz8. sA4d

Bringing the two semi-infinite pieces together increases the
free energy by

+ r1r2E
0

`

vsz8ddz8 sA5d

per unit area. The surface tension for the planar fluid/fluid
interface is therefore

g12s`d = −
sDrd2

2
E

0

`

vsz8ddz8 sA6d

where Dr;r1−r2. Thus for a liquid/gas interface,Dr=rl
−rg, the difference in coexisting densities. For the potential
in Eq. (A2), g12s`d is calculated to be

g12s`d =
9

16
sDrd2permin

4 . sA7d

The analogous expression for the surface tension between a
solid wall of densityrw and a fluid of densityr1 is

gwfs`d = 9
16psr1

2ermin
4 − 2r1rwewfrmin,wf

4 d, sA8d

where ewf and rmin,wf refer to the interaction potential be-
tween wall and fluid particles, taken to be the same form as
Eq. (21).

Spherical interface

The potential at a distancer8 from the center of the sphere
of fluid, number densityr1, radiusR sR, r8d, is

r1vsr8,Rd = r1E
røR

dr fattsur 8 − r ud

= r1E
−R

R

dzE
0

ÎR2−z2

2psfattfÎsr8 − zd2 + s2gds

wheres2=x2+y2 andvsr8 ,Rd is rotationally invariant so we
have takenr 8 to lie along thez axis for the purpose of evalu-
ating the integral. For the Lennard-Jones attractive potential
of Eq. (21) integration gives

vsr8,Rd =5
4peS−

4rmin
3

9
−

R3

6
−

r83

48
+

9rmin
2 r8

40
+

R2r8

8
+

9rmin
4

32r8
D

S −
9R2rmin

2

40r8
+

R4

16r8
+

s12

40r8sr8 + Rd8 −
s6

4r8sr8 + Rd2 −
s12

45sr8 + Rd9 +
s6

6sr8 + Rd3D, R, r8 , R+ rmin,

4peS−
s12

40r8sr8 − Rd8 +
s6

4r8sr8 − Rd2 +
s12

45sr8 − Rd9 −
s6

6sr8 − Rd3

S +
s12

40r8sr8 + Rd8 −
s6

4r8sr8 + Rd2 −
s12

45sr8 + Rd9 +
s6

6sr8 + Rd3D, r8 . R+ rmin.

6 sA9d

The surface tension for a spherical fluid/fluid interface of radiusR is

g12sRd = −
sDrd2

2
E

R

` r82

R2 vsr8,Rddr8. sA10d

Using Eq.(A9) one obtains the sharp-kink approximation for the surface tension:
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g12sRd = sDrd2permin
4 S 9

16
−

1

12

lns2R/rmind
sR/rmind2 −

5

72

1

sR/rmind2

−
1

110 592

1

sR/rmind8D sA11d

=g12s`dS1 −
4

27

lns2R/rmind
sR/rmind2 −

10

81

1

sR/rmind2

−
1

62 208

1

sR/rmind8D sA12d

for R. rmin (cf. [12,20]). The same formula is valid for the
tension between a spherical solid wall and a fluid of density
r1 providedg12s`d is replaced bygwfs`d, Eq. (A8).

The interaction between the interfaces

If the thicknessl of the drying film is not infinite(see
Figs. 1 and 2) then there will be an additional term in the
grand potential due to the interaction between the wall/gas

and the gas/liquid interfaces. For long-ranged interparticle
forces the dominant contribution is from the tails of the
fluid-fluid potentials, which decay as inverse powers of dis-
tance. In the sharp-kink approximation the extra free energy
per unit area for the planar interface is

vsl ;`d = − rgsrl − rgdE
l

`

vsz8ddz8 sA13d

where the wall densityrw has been set to zero for simplicity.
Integration gives the binding potential of Eq.(5). The
equivalent expression for a spherical interface is

vsl ;Rd = − rgsrl − rgdE
l+R

` r82

R2 vsr8,Rddr8 = vsl ;`dF1 +
l

R

+ OS l2

R2 lnsl/2RdDG . sA14d

The leading-order correction to the planar result is consistent
with the scaling form given by Eqs.(2.39) and (2.40) of
Ref. [12].
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